//===--- WhitespaceManager.cpp - Format C++ code --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements WhitespaceManager class. /// //===----------------------------------------------------------------------===// #include "WhitespaceManager.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include namespace clang { namespace format { bool WhitespaceManager::Change::IsBeforeInFile::operator()( const Change &C1, const Change &C2) const { return SourceMgr.isBeforeInTranslationUnit( C1.OriginalWhitespaceRange.getBegin(), C2.OriginalWhitespaceRange.getBegin()) || (C1.OriginalWhitespaceRange.getBegin() == C2.OriginalWhitespaceRange.getBegin() && SourceMgr.isBeforeInTranslationUnit( C1.OriginalWhitespaceRange.getEnd(), C2.OriginalWhitespaceRange.getEnd())); } WhitespaceManager::Change::Change(const FormatToken &Tok, bool CreateReplacement, SourceRange OriginalWhitespaceRange, int Spaces, unsigned StartOfTokenColumn, unsigned NewlinesBefore, StringRef PreviousLinePostfix, StringRef CurrentLinePrefix, bool IsAligned, bool ContinuesPPDirective, bool IsInsideToken) : Tok(&Tok), CreateReplacement(CreateReplacement), OriginalWhitespaceRange(OriginalWhitespaceRange), StartOfTokenColumn(StartOfTokenColumn), NewlinesBefore(NewlinesBefore), PreviousLinePostfix(PreviousLinePostfix), CurrentLinePrefix(CurrentLinePrefix), IsAligned(IsAligned), ContinuesPPDirective(ContinuesPPDirective), Spaces(Spaces), IsInsideToken(IsInsideToken), IsTrailingComment(false), TokenLength(0), PreviousEndOfTokenColumn(0), EscapedNewlineColumn(0), StartOfBlockComment(nullptr), IndentationOffset(0), ConditionalsLevel(0) { } void WhitespaceManager::replaceWhitespace(FormatToken &Tok, unsigned Newlines, unsigned Spaces, unsigned StartOfTokenColumn, bool IsAligned, bool InPPDirective) { if (Tok.Finalized || (Tok.MacroCtx && Tok.MacroCtx->Role == MR_ExpandedArg)) return; Tok.setDecision((Newlines > 0) ? FD_Break : FD_Continue); Changes.push_back(Change(Tok, /*CreateReplacement=*/true, Tok.WhitespaceRange, Spaces, StartOfTokenColumn, Newlines, "", "", IsAligned, InPPDirective && !Tok.IsFirst, /*IsInsideToken=*/false)); } void WhitespaceManager::addUntouchableToken(const FormatToken &Tok, bool InPPDirective) { if (Tok.Finalized || (Tok.MacroCtx && Tok.MacroCtx->Role == MR_ExpandedArg)) return; Changes.push_back(Change(Tok, /*CreateReplacement=*/false, Tok.WhitespaceRange, /*Spaces=*/0, Tok.OriginalColumn, Tok.NewlinesBefore, "", "", /*IsAligned=*/false, InPPDirective && !Tok.IsFirst, /*IsInsideToken=*/false)); } llvm::Error WhitespaceManager::addReplacement(const tooling::Replacement &Replacement) { return Replaces.add(Replacement); } bool WhitespaceManager::inputUsesCRLF(StringRef Text, bool DefaultToCRLF) { size_t LF = Text.count('\n'); size_t CR = Text.count('\r') * 2; return LF == CR ? DefaultToCRLF : CR > LF; } void WhitespaceManager::replaceWhitespaceInToken( const FormatToken &Tok, unsigned Offset, unsigned ReplaceChars, StringRef PreviousPostfix, StringRef CurrentPrefix, bool InPPDirective, unsigned Newlines, int Spaces) { if (Tok.Finalized || (Tok.MacroCtx && Tok.MacroCtx->Role == MR_ExpandedArg)) return; SourceLocation Start = Tok.getStartOfNonWhitespace().getLocWithOffset(Offset); Changes.push_back( Change(Tok, /*CreateReplacement=*/true, SourceRange(Start, Start.getLocWithOffset(ReplaceChars)), Spaces, std::max(0, Spaces), Newlines, PreviousPostfix, CurrentPrefix, /*IsAligned=*/true, InPPDirective && !Tok.IsFirst, /*IsInsideToken=*/true)); } const tooling::Replacements &WhitespaceManager::generateReplacements() { if (Changes.empty()) return Replaces; llvm::sort(Changes, Change::IsBeforeInFile(SourceMgr)); calculateLineBreakInformation(); alignConsecutiveMacros(); alignConsecutiveShortCaseStatements(/*IsExpr=*/true); alignConsecutiveShortCaseStatements(/*IsExpr=*/false); alignConsecutiveDeclarations(); alignConsecutiveBitFields(); alignConsecutiveAssignments(); if (Style.isTableGen()) { alignConsecutiveTableGenBreakingDAGArgColons(); alignConsecutiveTableGenCondOperatorColons(); alignConsecutiveTableGenDefinitions(); } alignChainedConditionals(); alignTrailingComments(); alignEscapedNewlines(); alignArrayInitializers(); generateChanges(); return Replaces; } void WhitespaceManager::calculateLineBreakInformation() { Changes[0].PreviousEndOfTokenColumn = 0; Change *LastOutsideTokenChange = &Changes[0]; for (unsigned I = 1, e = Changes.size(); I != e; ++I) { auto &C = Changes[I]; auto &P = Changes[I - 1]; auto &PrevTokLength = P.TokenLength; SourceLocation OriginalWhitespaceStart = C.OriginalWhitespaceRange.getBegin(); SourceLocation PreviousOriginalWhitespaceEnd = P.OriginalWhitespaceRange.getEnd(); unsigned OriginalWhitespaceStartOffset = SourceMgr.getFileOffset(OriginalWhitespaceStart); unsigned PreviousOriginalWhitespaceEndOffset = SourceMgr.getFileOffset(PreviousOriginalWhitespaceEnd); assert(PreviousOriginalWhitespaceEndOffset <= OriginalWhitespaceStartOffset); const char *const PreviousOriginalWhitespaceEndData = SourceMgr.getCharacterData(PreviousOriginalWhitespaceEnd); StringRef Text(PreviousOriginalWhitespaceEndData, SourceMgr.getCharacterData(OriginalWhitespaceStart) - PreviousOriginalWhitespaceEndData); // Usually consecutive changes would occur in consecutive tokens. This is // not the case however when analyzing some preprocessor runs of the // annotated lines. For example, in this code: // // #if A // line 1 // int i = 1; // #else B // line 2 // int i = 2; // #endif // line 3 // // one of the runs will produce the sequence of lines marked with line 1, 2 // and 3. So the two consecutive whitespace changes just before '// line 2' // and before '#endif // line 3' span multiple lines and tokens: // // #else B{change X}[// line 2 // int i = 2; // ]{change Y}#endif // line 3 // // For this reason, if the text between consecutive changes spans multiple // newlines, the token length must be adjusted to the end of the original // line of the token. auto NewlinePos = Text.find_first_of('\n'); if (NewlinePos == StringRef::npos) { PrevTokLength = OriginalWhitespaceStartOffset - PreviousOriginalWhitespaceEndOffset + C.PreviousLinePostfix.size() + P.CurrentLinePrefix.size(); if (!P.IsInsideToken) PrevTokLength = std::min(PrevTokLength, P.Tok->ColumnWidth); } else { PrevTokLength = NewlinePos + P.CurrentLinePrefix.size(); } // If there are multiple changes in this token, sum up all the changes until // the end of the line. if (P.IsInsideToken && P.NewlinesBefore == 0) LastOutsideTokenChange->TokenLength += PrevTokLength + P.Spaces; else LastOutsideTokenChange = &P; C.PreviousEndOfTokenColumn = P.StartOfTokenColumn + PrevTokLength; P.IsTrailingComment = (C.NewlinesBefore > 0 || C.Tok->is(tok::eof) || (C.IsInsideToken && C.Tok->is(tok::comment))) && P.Tok->is(tok::comment) && // FIXME: This is a dirty hack. The problem is that // BreakableLineCommentSection does comment reflow changes and here is // the aligning of trailing comments. Consider the case where we reflow // the second line up in this example: // // // line 1 // // line 2 // // That amounts to 2 changes by BreakableLineCommentSection: // - the first, delimited by (), for the whitespace between the tokens, // - and second, delimited by [], for the whitespace at the beginning // of the second token: // // // line 1( // )[// ]line 2 // // So in the end we have two changes like this: // // // line1()[ ]line 2 // // Note that the OriginalWhitespaceStart of the second change is the // same as the PreviousOriginalWhitespaceEnd of the first change. // In this case, the below check ensures that the second change doesn't // get treated as a trailing comment change here, since this might // trigger additional whitespace to be wrongly inserted before "line 2" // by the comment aligner here. // // For a proper solution we need a mechanism to say to WhitespaceManager // that a particular change breaks the current sequence of trailing // comments. OriginalWhitespaceStart != PreviousOriginalWhitespaceEnd; } // FIXME: The last token is currently not always an eof token; in those // cases, setting TokenLength of the last token to 0 is wrong. Changes.back().TokenLength = 0; Changes.back().IsTrailingComment = Changes.back().Tok->is(tok::comment); const WhitespaceManager::Change *LastBlockComment = nullptr; for (auto &Change : Changes) { // Reset the IsTrailingComment flag for changes inside of trailing comments // so they don't get realigned later. Comment line breaks however still need // to be aligned. if (Change.IsInsideToken && Change.NewlinesBefore == 0) Change.IsTrailingComment = false; Change.StartOfBlockComment = nullptr; Change.IndentationOffset = 0; if (Change.Tok->is(tok::comment)) { if (Change.Tok->is(TT_LineComment) || !Change.IsInsideToken) { LastBlockComment = &Change; } else if ((Change.StartOfBlockComment = LastBlockComment)) { Change.IndentationOffset = Change.StartOfTokenColumn - Change.StartOfBlockComment->StartOfTokenColumn; } } else { LastBlockComment = nullptr; } } // Compute conditional nesting level // Level is increased for each conditional, unless this conditional continues // a chain of conditional, i.e. starts immediately after the colon of another // conditional. SmallVector ScopeStack; int ConditionalsLevel = 0; for (auto &Change : Changes) { for (unsigned i = 0, e = Change.Tok->FakeLParens.size(); i != e; ++i) { bool isNestedConditional = Change.Tok->FakeLParens[e - 1 - i] == prec::Conditional && !(i == 0 && Change.Tok->Previous && Change.Tok->Previous->is(TT_ConditionalExpr) && Change.Tok->Previous->is(tok::colon)); if (isNestedConditional) ++ConditionalsLevel; ScopeStack.push_back(isNestedConditional); } Change.ConditionalsLevel = ConditionalsLevel; for (unsigned i = Change.Tok->FakeRParens; i > 0 && ScopeStack.size(); --i) if (ScopeStack.pop_back_val()) --ConditionalsLevel; } } // Align a single sequence of tokens, see AlignTokens below. // Column - The token for which Matches returns true is moved to this column. // RightJustify - Whether it is the token's right end or left end that gets // moved to that column. template static void AlignTokenSequence(const FormatStyle &Style, unsigned Start, unsigned End, unsigned Column, bool RightJustify, F &&Matches, SmallVector &Changes) { bool FoundMatchOnLine = false; int Shift = 0; // ScopeStack keeps track of the current scope depth. It contains indices of // the first token on each scope. // We only run the "Matches" function on tokens from the outer-most scope. // However, we do need to pay special attention to one class of tokens // that are not in the outer-most scope, and that is function parameters // which are split across multiple lines, as illustrated by this example: // double a(int x); // int b(int y, // double z); // In the above example, we need to take special care to ensure that // 'double z' is indented along with it's owning function 'b'. // The same holds for calling a function: // double a = foo(x); // int b = bar(foo(y), // foor(z)); // Similar for broken string literals: // double x = 3.14; // auto s = "Hello" // "World"; // Special handling is required for 'nested' ternary operators. SmallVector ScopeStack; for (unsigned i = Start; i != End; ++i) { auto &CurrentChange = Changes[i]; if (ScopeStack.size() != 0 && CurrentChange.indentAndNestingLevel() < Changes[ScopeStack.back()].indentAndNestingLevel()) { ScopeStack.pop_back(); } // Compare current token to previous non-comment token to ensure whether // it is in a deeper scope or not. unsigned PreviousNonComment = i - 1; while (PreviousNonComment > Start && Changes[PreviousNonComment].Tok->is(tok::comment)) { --PreviousNonComment; } if (i != Start && CurrentChange.indentAndNestingLevel() > Changes[PreviousNonComment].indentAndNestingLevel()) { ScopeStack.push_back(i); } bool InsideNestedScope = ScopeStack.size() != 0; bool ContinuedStringLiteral = i > Start && CurrentChange.Tok->is(tok::string_literal) && Changes[i - 1].Tok->is(tok::string_literal); bool SkipMatchCheck = InsideNestedScope || ContinuedStringLiteral; if (CurrentChange.NewlinesBefore > 0 && !SkipMatchCheck) { Shift = 0; FoundMatchOnLine = false; } // If this is the first matching token to be aligned, remember by how many // spaces it has to be shifted, so the rest of the changes on the line are // shifted by the same amount if (!FoundMatchOnLine && !SkipMatchCheck && Matches(CurrentChange)) { FoundMatchOnLine = true; Shift = Column - (RightJustify ? CurrentChange.TokenLength : 0) - CurrentChange.StartOfTokenColumn; CurrentChange.Spaces += Shift; // FIXME: This is a workaround that should be removed when we fix // http://llvm.org/PR53699. An assertion later below verifies this. if (CurrentChange.NewlinesBefore == 0) { CurrentChange.Spaces = std::max(CurrentChange.Spaces, static_cast(CurrentChange.Tok->SpacesRequiredBefore)); } } if (Shift == 0) continue; // This is for function parameters that are split across multiple lines, // as mentioned in the ScopeStack comment. if (InsideNestedScope && CurrentChange.NewlinesBefore > 0) { unsigned ScopeStart = ScopeStack.back(); auto ShouldShiftBeAdded = [&] { // Function declaration if (Changes[ScopeStart - 1].Tok->is(TT_FunctionDeclarationName)) return true; // Lambda. if (Changes[ScopeStart - 1].Tok->is(TT_LambdaLBrace)) return false; // Continued function declaration if (ScopeStart > Start + 1 && Changes[ScopeStart - 2].Tok->is(TT_FunctionDeclarationName)) { return true; } // Continued (template) function call. if (ScopeStart > Start + 1 && Changes[ScopeStart - 2].Tok->isOneOf(tok::identifier, TT_TemplateCloser) && Changes[ScopeStart - 1].Tok->is(tok::l_paren) && Changes[ScopeStart].Tok->isNot(TT_LambdaLSquare)) { if (CurrentChange.Tok->MatchingParen && CurrentChange.Tok->MatchingParen->is(TT_LambdaLBrace)) { return false; } if (Changes[ScopeStart].NewlinesBefore > 0) return false; if (CurrentChange.Tok->is(tok::l_brace) && CurrentChange.Tok->is(BK_BracedInit)) { return true; } return Style.BinPackArguments; } // Ternary operator if (CurrentChange.Tok->is(TT_ConditionalExpr)) return true; // Period Initializer .XXX = 1. if (CurrentChange.Tok->is(TT_DesignatedInitializerPeriod)) return true; // Continued ternary operator if (CurrentChange.Tok->Previous && CurrentChange.Tok->Previous->is(TT_ConditionalExpr)) { return true; } // Continued direct-list-initialization using braced list. if (ScopeStart > Start + 1 && Changes[ScopeStart - 2].Tok->is(tok::identifier) && Changes[ScopeStart - 1].Tok->is(tok::l_brace) && CurrentChange.Tok->is(tok::l_brace) && CurrentChange.Tok->is(BK_BracedInit)) { return true; } // Continued braced list. if (ScopeStart > Start + 1 && Changes[ScopeStart - 2].Tok->isNot(tok::identifier) && Changes[ScopeStart - 1].Tok->is(tok::l_brace) && CurrentChange.Tok->isNot(tok::r_brace)) { for (unsigned OuterScopeStart : llvm::reverse(ScopeStack)) { // Lambda. if (OuterScopeStart > Start && Changes[OuterScopeStart - 1].Tok->is(TT_LambdaLBrace)) { return false; } } if (Changes[ScopeStart].NewlinesBefore > 0) return false; return true; } // Continued template parameter. if (Changes[ScopeStart - 1].Tok->is(TT_TemplateOpener)) return true; return false; }; if (ShouldShiftBeAdded()) CurrentChange.Spaces += Shift; } if (ContinuedStringLiteral) CurrentChange.Spaces += Shift; // We should not remove required spaces unless we break the line before. assert(Shift > 0 || Changes[i].NewlinesBefore > 0 || CurrentChange.Spaces >= static_cast(Changes[i].Tok->SpacesRequiredBefore) || CurrentChange.Tok->is(tok::eof)); CurrentChange.StartOfTokenColumn += Shift; if (i + 1 != Changes.size()) Changes[i + 1].PreviousEndOfTokenColumn += Shift; // If PointerAlignment is PAS_Right, keep *s or &s next to the token, // except if the token is equal, then a space is needed. if ((Style.PointerAlignment == FormatStyle::PAS_Right || Style.ReferenceAlignment == FormatStyle::RAS_Right) && CurrentChange.Spaces != 0 && !CurrentChange.Tok->isOneOf(tok::equal, tok::r_paren, TT_TemplateCloser)) { const bool ReferenceNotRightAligned = Style.ReferenceAlignment != FormatStyle::RAS_Right && Style.ReferenceAlignment != FormatStyle::RAS_Pointer; for (int Previous = i - 1; Previous >= 0 && Changes[Previous].Tok->is(TT_PointerOrReference); --Previous) { assert(Changes[Previous].Tok->isPointerOrReference()); if (Changes[Previous].Tok->isNot(tok::star)) { if (ReferenceNotRightAligned) continue; } else if (Style.PointerAlignment != FormatStyle::PAS_Right) { continue; } Changes[Previous + 1].Spaces -= Shift; Changes[Previous].Spaces += Shift; Changes[Previous].StartOfTokenColumn += Shift; } } } } // Walk through a subset of the changes, starting at StartAt, and find // sequences of matching tokens to align. To do so, keep track of the lines and // whether or not a matching token was found on a line. If a matching token is // found, extend the current sequence. If the current line cannot be part of a // sequence, e.g. because there is an empty line before it or it contains only // non-matching tokens, finalize the previous sequence. // The value returned is the token on which we stopped, either because we // exhausted all items inside Changes, or because we hit a scope level higher // than our initial scope. // This function is recursive. Each invocation processes only the scope level // equal to the initial level, which is the level of Changes[StartAt]. // If we encounter a scope level greater than the initial level, then we call // ourselves recursively, thereby avoiding the pollution of the current state // with the alignment requirements of the nested sub-level. This recursive // behavior is necessary for aligning function prototypes that have one or more // arguments. // If this function encounters a scope level less than the initial level, // it returns the current position. // There is a non-obvious subtlety in the recursive behavior: Even though we // defer processing of nested levels to recursive invocations of this // function, when it comes time to align a sequence of tokens, we run the // alignment on the entire sequence, including the nested levels. // When doing so, most of the nested tokens are skipped, because their // alignment was already handled by the recursive invocations of this function. // However, the special exception is that we do NOT skip function parameters // that are split across multiple lines. See the test case in FormatTest.cpp // that mentions "split function parameter alignment" for an example of this. // When the parameter RightJustify is true, the operator will be // right-justified. It is used to align compound assignments like `+=` and `=`. // When RightJustify and ACS.PadOperators are true, operators in each block to // be aligned will be padded on the left to the same length before aligning. template static unsigned AlignTokens(const FormatStyle &Style, F &&Matches, SmallVector &Changes, unsigned StartAt, const FormatStyle::AlignConsecutiveStyle &ACS = {}, bool RightJustify = false) { // We arrange each line in 3 parts. The operator to be aligned (the anchor), // and text to its left and right. In the aligned text the width of each part // will be the maximum of that over the block that has been aligned. Maximum // widths of each part so far. When RightJustify is true and ACS.PadOperators // is false, the part from start of line to the right end of the anchor. // Otherwise, only the part to the left of the anchor. Including the space // that exists on its left from the start. Not including the padding added on // the left to right-justify the anchor. unsigned WidthLeft = 0; // The operator to be aligned when RightJustify is true and ACS.PadOperators // is false. 0 otherwise. unsigned WidthAnchor = 0; // Width to the right of the anchor. Plus width of the anchor when // RightJustify is false. unsigned WidthRight = 0; // Line number of the start and the end of the current token sequence. unsigned StartOfSequence = 0; unsigned EndOfSequence = 0; // Measure the scope level (i.e. depth of (), [], {}) of the first token, and // abort when we hit any token in a higher scope than the starting one. auto IndentAndNestingLevel = StartAt < Changes.size() ? Changes[StartAt].indentAndNestingLevel() : std::tuple(); // Keep track of the number of commas before the matching tokens, we will only // align a sequence of matching tokens if they are preceded by the same number // of commas. unsigned CommasBeforeLastMatch = 0; unsigned CommasBeforeMatch = 0; // Whether a matching token has been found on the current line. bool FoundMatchOnLine = false; // Whether the current line consists purely of comments. bool LineIsComment = true; // Aligns a sequence of matching tokens, on the MinColumn column. // // Sequences start from the first matching token to align, and end at the // first token of the first line that doesn't need to be aligned. // // We need to adjust the StartOfTokenColumn of each Change that is on a line // containing any matching token to be aligned and located after such token. auto AlignCurrentSequence = [&] { if (StartOfSequence > 0 && StartOfSequence < EndOfSequence) { AlignTokenSequence(Style, StartOfSequence, EndOfSequence, WidthLeft + WidthAnchor, RightJustify, Matches, Changes); } WidthLeft = 0; WidthAnchor = 0; WidthRight = 0; StartOfSequence = 0; EndOfSequence = 0; }; unsigned i = StartAt; for (unsigned e = Changes.size(); i != e; ++i) { auto &CurrentChange = Changes[i]; if (CurrentChange.indentAndNestingLevel() < IndentAndNestingLevel) break; if (CurrentChange.NewlinesBefore != 0) { CommasBeforeMatch = 0; EndOfSequence = i; // Whether to break the alignment sequence because of an empty line. bool EmptyLineBreak = (CurrentChange.NewlinesBefore > 1) && !ACS.AcrossEmptyLines; // Whether to break the alignment sequence because of a line without a // match. bool NoMatchBreak = !FoundMatchOnLine && !(LineIsComment && ACS.AcrossComments); if (EmptyLineBreak || NoMatchBreak) AlignCurrentSequence(); // A new line starts, re-initialize line status tracking bools. // Keep the match state if a string literal is continued on this line. if (i == 0 || CurrentChange.Tok->isNot(tok::string_literal) || Changes[i - 1].Tok->isNot(tok::string_literal)) { FoundMatchOnLine = false; } LineIsComment = true; } if (CurrentChange.Tok->isNot(tok::comment)) LineIsComment = false; if (CurrentChange.Tok->is(tok::comma)) { ++CommasBeforeMatch; } else if (CurrentChange.indentAndNestingLevel() > IndentAndNestingLevel) { // Call AlignTokens recursively, skipping over this scope block. unsigned StoppedAt = AlignTokens(Style, Matches, Changes, i, ACS, RightJustify); i = StoppedAt - 1; continue; } if (!Matches(CurrentChange)) continue; // If there is more than one matching token per line, or if the number of // preceding commas, do not match anymore, end the sequence. if (FoundMatchOnLine || CommasBeforeMatch != CommasBeforeLastMatch) AlignCurrentSequence(); CommasBeforeLastMatch = CommasBeforeMatch; FoundMatchOnLine = true; if (StartOfSequence == 0) StartOfSequence = i; unsigned ChangeWidthLeft = CurrentChange.StartOfTokenColumn; unsigned ChangeWidthAnchor = 0; unsigned ChangeWidthRight = 0; if (RightJustify) if (ACS.PadOperators) ChangeWidthAnchor = CurrentChange.TokenLength; else ChangeWidthLeft += CurrentChange.TokenLength; else ChangeWidthRight = CurrentChange.TokenLength; for (unsigned j = i + 1; j != e && Changes[j].NewlinesBefore == 0; ++j) { ChangeWidthRight += Changes[j].Spaces; // Changes are generally 1:1 with the tokens, but a change could also be // inside of a token, in which case it's counted more than once: once for // the whitespace surrounding the token (!IsInsideToken) and once for // each whitespace change within it (IsInsideToken). // Therefore, changes inside of a token should only count the space. if (!Changes[j].IsInsideToken) ChangeWidthRight += Changes[j].TokenLength; } // If we are restricted by the maximum column width, end the sequence. unsigned NewLeft = std::max(ChangeWidthLeft, WidthLeft); unsigned NewAnchor = std::max(ChangeWidthAnchor, WidthAnchor); unsigned NewRight = std::max(ChangeWidthRight, WidthRight); // `ColumnLimit == 0` means there is no column limit. if (Style.ColumnLimit != 0 && Style.ColumnLimit < NewLeft + NewAnchor + NewRight) { AlignCurrentSequence(); StartOfSequence = i; WidthLeft = ChangeWidthLeft; WidthAnchor = ChangeWidthAnchor; WidthRight = ChangeWidthRight; } else { WidthLeft = NewLeft; WidthAnchor = NewAnchor; WidthRight = NewRight; } } EndOfSequence = i; AlignCurrentSequence(); return i; } // Aligns a sequence of matching tokens, on the MinColumn column. // // Sequences start from the first matching token to align, and end at the // first token of the first line that doesn't need to be aligned. // // We need to adjust the StartOfTokenColumn of each Change that is on a line // containing any matching token to be aligned and located after such token. static void AlignMatchingTokenSequence( unsigned &StartOfSequence, unsigned &EndOfSequence, unsigned &MinColumn, std::function Matches, SmallVector &Changes) { if (StartOfSequence > 0 && StartOfSequence < EndOfSequence) { bool FoundMatchOnLine = false; int Shift = 0; for (unsigned I = StartOfSequence; I != EndOfSequence; ++I) { if (Changes[I].NewlinesBefore > 0) { Shift = 0; FoundMatchOnLine = false; } // If this is the first matching token to be aligned, remember by how many // spaces it has to be shifted, so the rest of the changes on the line are // shifted by the same amount. if (!FoundMatchOnLine && Matches(Changes[I])) { FoundMatchOnLine = true; Shift = MinColumn - Changes[I].StartOfTokenColumn; Changes[I].Spaces += Shift; } assert(Shift >= 0); Changes[I].StartOfTokenColumn += Shift; if (I + 1 != Changes.size()) Changes[I + 1].PreviousEndOfTokenColumn += Shift; } } MinColumn = 0; StartOfSequence = 0; EndOfSequence = 0; } void WhitespaceManager::alignConsecutiveMacros() { if (!Style.AlignConsecutiveMacros.Enabled) return; auto AlignMacrosMatches = [](const Change &C) { const FormatToken *Current = C.Tok; unsigned SpacesRequiredBefore = 1; if (Current->SpacesRequiredBefore == 0 || !Current->Previous) return false; Current = Current->Previous; // If token is a ")", skip over the parameter list, to the // token that precedes the "(" if (Current->is(tok::r_paren) && Current->MatchingParen) { Current = Current->MatchingParen->Previous; SpacesRequiredBefore = 0; } if (!Current || Current->isNot(tok::identifier)) return false; if (!Current->Previous || Current->Previous->isNot(tok::pp_define)) return false; // For a macro function, 0 spaces are required between the // identifier and the lparen that opens the parameter list. // For a simple macro, 1 space is required between the // identifier and the first token of the defined value. return Current->Next->SpacesRequiredBefore == SpacesRequiredBefore; }; unsigned MinColumn = 0; // Start and end of the token sequence we're processing. unsigned StartOfSequence = 0; unsigned EndOfSequence = 0; // Whether a matching token has been found on the current line. bool FoundMatchOnLine = false; // Whether the current line consists only of comments bool LineIsComment = true; unsigned I = 0; for (unsigned E = Changes.size(); I != E; ++I) { if (Changes[I].NewlinesBefore != 0) { EndOfSequence = I; // Whether to break the alignment sequence because of an empty line. bool EmptyLineBreak = (Changes[I].NewlinesBefore > 1) && !Style.AlignConsecutiveMacros.AcrossEmptyLines; // Whether to break the alignment sequence because of a line without a // match. bool NoMatchBreak = !FoundMatchOnLine && !(LineIsComment && Style.AlignConsecutiveMacros.AcrossComments); if (EmptyLineBreak || NoMatchBreak) { AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn, AlignMacrosMatches, Changes); } // A new line starts, re-initialize line status tracking bools. FoundMatchOnLine = false; LineIsComment = true; } if (Changes[I].Tok->isNot(tok::comment)) LineIsComment = false; if (!AlignMacrosMatches(Changes[I])) continue; FoundMatchOnLine = true; if (StartOfSequence == 0) StartOfSequence = I; unsigned ChangeMinColumn = Changes[I].StartOfTokenColumn; MinColumn = std::max(MinColumn, ChangeMinColumn); } EndOfSequence = I; AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn, AlignMacrosMatches, Changes); } void WhitespaceManager::alignConsecutiveAssignments() { if (!Style.AlignConsecutiveAssignments.Enabled) return; AlignTokens( Style, [&](const Change &C) { // Do not align on equal signs that are first on a line. if (C.NewlinesBefore > 0) return false; // Do not align on equal signs that are last on a line. if (&C != &Changes.back() && (&C + 1)->NewlinesBefore > 0) return false; // Do not align operator= overloads. FormatToken *Previous = C.Tok->getPreviousNonComment(); if (Previous && Previous->is(tok::kw_operator)) return false; return Style.AlignConsecutiveAssignments.AlignCompound ? C.Tok->getPrecedence() == prec::Assignment : (C.Tok->is(tok::equal) || // In Verilog the '<=' is not a compound assignment, thus // it is aligned even when the AlignCompound option is not // set. (Style.isVerilog() && C.Tok->is(tok::lessequal) && C.Tok->getPrecedence() == prec::Assignment)); }, Changes, /*StartAt=*/0, Style.AlignConsecutiveAssignments, /*RightJustify=*/true); } void WhitespaceManager::alignConsecutiveBitFields() { alignConsecutiveColons(Style.AlignConsecutiveBitFields, TT_BitFieldColon); } void WhitespaceManager::alignConsecutiveColons( const FormatStyle::AlignConsecutiveStyle &AlignStyle, TokenType Type) { if (!AlignStyle.Enabled) return; AlignTokens( Style, [&](Change const &C) { // Do not align on ':' that is first on a line. if (C.NewlinesBefore > 0) return false; // Do not align on ':' that is last on a line. if (&C != &Changes.back() && (&C + 1)->NewlinesBefore > 0) return false; return C.Tok->is(Type); }, Changes, /*StartAt=*/0, AlignStyle); } void WhitespaceManager::alignConsecutiveShortCaseStatements(bool IsExpr) { if (!Style.AlignConsecutiveShortCaseStatements.Enabled || !(IsExpr ? Style.AllowShortCaseExpressionOnASingleLine : Style.AllowShortCaseLabelsOnASingleLine)) { return; } const auto Type = IsExpr ? TT_CaseLabelArrow : TT_CaseLabelColon; const auto &Option = Style.AlignConsecutiveShortCaseStatements; const bool AlignArrowOrColon = IsExpr ? Option.AlignCaseArrows : Option.AlignCaseColons; auto Matches = [&](const Change &C) { if (AlignArrowOrColon) return C.Tok->is(Type); // Ignore 'IsInsideToken' to allow matching trailing comments which // need to be reflowed as that causes the token to appear in two // different changes, which will cause incorrect alignment as we'll // reflow early due to detecting multiple aligning tokens per line. return !C.IsInsideToken && C.Tok->Previous && C.Tok->Previous->is(Type); }; unsigned MinColumn = 0; // Empty case statements don't break the alignment, but don't necessarily // match our predicate, so we need to track their column so they can push out // our alignment. unsigned MinEmptyCaseColumn = 0; // Start and end of the token sequence we're processing. unsigned StartOfSequence = 0; unsigned EndOfSequence = 0; // Whether a matching token has been found on the current line. bool FoundMatchOnLine = false; bool LineIsComment = true; bool LineIsEmptyCase = false; unsigned I = 0; for (unsigned E = Changes.size(); I != E; ++I) { if (Changes[I].NewlinesBefore != 0) { // Whether to break the alignment sequence because of an empty line. bool EmptyLineBreak = (Changes[I].NewlinesBefore > 1) && !Style.AlignConsecutiveShortCaseStatements.AcrossEmptyLines; // Whether to break the alignment sequence because of a line without a // match. bool NoMatchBreak = !FoundMatchOnLine && !(LineIsComment && Style.AlignConsecutiveShortCaseStatements.AcrossComments) && !LineIsEmptyCase; if (EmptyLineBreak || NoMatchBreak) { AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn, Matches, Changes); MinEmptyCaseColumn = 0; } // A new line starts, re-initialize line status tracking bools. FoundMatchOnLine = false; LineIsComment = true; LineIsEmptyCase = false; } if (Changes[I].Tok->isNot(tok::comment)) LineIsComment = false; if (Changes[I].Tok->is(Type)) { LineIsEmptyCase = !Changes[I].Tok->Next || Changes[I].Tok->Next->isTrailingComment(); if (LineIsEmptyCase) { if (Style.AlignConsecutiveShortCaseStatements.AlignCaseColons) { MinEmptyCaseColumn = std::max(MinEmptyCaseColumn, Changes[I].StartOfTokenColumn); } else { MinEmptyCaseColumn = std::max(MinEmptyCaseColumn, Changes[I].StartOfTokenColumn + 2); } } } if (!Matches(Changes[I])) continue; if (LineIsEmptyCase) continue; FoundMatchOnLine = true; if (StartOfSequence == 0) StartOfSequence = I; EndOfSequence = I + 1; MinColumn = std::max(MinColumn, Changes[I].StartOfTokenColumn); // Allow empty case statements to push out our alignment. MinColumn = std::max(MinColumn, MinEmptyCaseColumn); } AlignMatchingTokenSequence(StartOfSequence, EndOfSequence, MinColumn, Matches, Changes); } void WhitespaceManager::alignConsecutiveTableGenBreakingDAGArgColons() { alignConsecutiveColons(Style.AlignConsecutiveTableGenBreakingDAGArgColons, TT_TableGenDAGArgListColonToAlign); } void WhitespaceManager::alignConsecutiveTableGenCondOperatorColons() { alignConsecutiveColons(Style.AlignConsecutiveTableGenCondOperatorColons, TT_TableGenCondOperatorColon); } void WhitespaceManager::alignConsecutiveTableGenDefinitions() { alignConsecutiveColons(Style.AlignConsecutiveTableGenDefinitionColons, TT_InheritanceColon); } void WhitespaceManager::alignConsecutiveDeclarations() { if (!Style.AlignConsecutiveDeclarations.Enabled) return; AlignTokens( Style, [&](Change const &C) { if (Style.AlignConsecutiveDeclarations.AlignFunctionPointers) { for (const auto *Prev = C.Tok->Previous; Prev; Prev = Prev->Previous) if (Prev->is(tok::equal)) return false; if (C.Tok->is(TT_FunctionTypeLParen)) return true; } if (C.Tok->is(TT_FunctionDeclarationName)) return true; if (C.Tok->isNot(TT_StartOfName)) return false; if (C.Tok->Previous && C.Tok->Previous->is(TT_StatementAttributeLikeMacro)) return false; // Check if there is a subsequent name that starts the same declaration. for (FormatToken *Next = C.Tok->Next; Next; Next = Next->Next) { if (Next->is(tok::comment)) continue; if (Next->is(TT_PointerOrReference)) return false; if (!Next->Tok.getIdentifierInfo()) break; if (Next->isOneOf(TT_StartOfName, TT_FunctionDeclarationName, tok::kw_operator)) { return false; } } return true; }, Changes, /*StartAt=*/0, Style.AlignConsecutiveDeclarations); } void WhitespaceManager::alignChainedConditionals() { if (Style.BreakBeforeTernaryOperators) { AlignTokens( Style, [](Change const &C) { // Align question operators and last colon return C.Tok->is(TT_ConditionalExpr) && ((C.Tok->is(tok::question) && !C.NewlinesBefore) || (C.Tok->is(tok::colon) && C.Tok->Next && (C.Tok->Next->FakeLParens.size() == 0 || C.Tok->Next->FakeLParens.back() != prec::Conditional))); }, Changes, /*StartAt=*/0); } else { static auto AlignWrappedOperand = [](Change const &C) { FormatToken *Previous = C.Tok->getPreviousNonComment(); return C.NewlinesBefore && Previous && Previous->is(TT_ConditionalExpr) && (Previous->is(tok::colon) && (C.Tok->FakeLParens.size() == 0 || C.Tok->FakeLParens.back() != prec::Conditional)); }; // Ensure we keep alignment of wrapped operands with non-wrapped operands // Since we actually align the operators, the wrapped operands need the // extra offset to be properly aligned. for (Change &C : Changes) if (AlignWrappedOperand(C)) C.StartOfTokenColumn -= 2; AlignTokens( Style, [this](Change const &C) { // Align question operators if next operand is not wrapped, as // well as wrapped operands after question operator or last // colon in conditional sequence return (C.Tok->is(TT_ConditionalExpr) && C.Tok->is(tok::question) && &C != &Changes.back() && (&C + 1)->NewlinesBefore == 0 && !(&C + 1)->IsTrailingComment) || AlignWrappedOperand(C); }, Changes, /*StartAt=*/0); } } void WhitespaceManager::alignTrailingComments() { if (Style.AlignTrailingComments.Kind == FormatStyle::TCAS_Never) return; const int Size = Changes.size(); int MinColumn = 0; int StartOfSequence = 0; bool BreakBeforeNext = false; int NewLineThreshold = 1; if (Style.AlignTrailingComments.Kind == FormatStyle::TCAS_Always) NewLineThreshold = Style.AlignTrailingComments.OverEmptyLines + 1; for (int I = 0, MaxColumn = INT_MAX, Newlines = 0; I < Size; ++I) { auto &C = Changes[I]; if (C.StartOfBlockComment) continue; Newlines += C.NewlinesBefore; if (!C.IsTrailingComment) continue; if (Style.AlignTrailingComments.Kind == FormatStyle::TCAS_Leave) { const int OriginalSpaces = C.OriginalWhitespaceRange.getEnd().getRawEncoding() - C.OriginalWhitespaceRange.getBegin().getRawEncoding() - C.Tok->LastNewlineOffset; assert(OriginalSpaces >= 0); const auto RestoredLineLength = C.StartOfTokenColumn + C.TokenLength + OriginalSpaces; // If leaving comments makes the line exceed the column limit, give up to // leave the comments. if (RestoredLineLength >= Style.ColumnLimit && Style.ColumnLimit > 0) break; C.Spaces = C.NewlinesBefore > 0 ? C.Tok->OriginalColumn : OriginalSpaces; continue; } const int ChangeMinColumn = C.StartOfTokenColumn; int ChangeMaxColumn; // If we don't create a replacement for this change, we have to consider // it to be immovable. if (!C.CreateReplacement) ChangeMaxColumn = ChangeMinColumn; else if (Style.ColumnLimit == 0) ChangeMaxColumn = INT_MAX; else if (Style.ColumnLimit >= C.TokenLength) ChangeMaxColumn = Style.ColumnLimit - C.TokenLength; else ChangeMaxColumn = ChangeMinColumn; if (I + 1 < Size && Changes[I + 1].ContinuesPPDirective && ChangeMaxColumn >= 2) { ChangeMaxColumn -= 2; } bool WasAlignedWithStartOfNextLine = false; if (C.NewlinesBefore >= 1) { // A comment on its own line. const auto CommentColumn = SourceMgr.getSpellingColumnNumber(C.OriginalWhitespaceRange.getEnd()); for (int J = I + 1; J < Size; ++J) { if (Changes[J].Tok->is(tok::comment)) continue; const auto NextColumn = SourceMgr.getSpellingColumnNumber( Changes[J].OriginalWhitespaceRange.getEnd()); // The start of the next token was previously aligned with the // start of this comment. WasAlignedWithStartOfNextLine = CommentColumn == NextColumn || CommentColumn == NextColumn + Style.IndentWidth; break; } } // We don't want to align comments which end a scope, which are here // identified by most closing braces. auto DontAlignThisComment = [](const auto *Tok) { if (Tok->is(tok::semi)) { Tok = Tok->getPreviousNonComment(); if (!Tok) return false; } if (Tok->is(tok::r_paren)) { // Back up past the parentheses and a `TT_DoWhile` that may precede. Tok = Tok->MatchingParen; if (!Tok) return false; Tok = Tok->getPreviousNonComment(); if (!Tok) return false; if (Tok->is(TT_DoWhile)) { const auto *Prev = Tok->getPreviousNonComment(); if (!Prev) { // A do-while-loop without braces. return true; } Tok = Prev; } } if (Tok->isNot(tok::r_brace)) return false; while (Tok->Previous && Tok->Previous->is(tok::r_brace)) Tok = Tok->Previous; return Tok->NewlinesBefore > 0; }; if (I > 0 && C.NewlinesBefore == 0 && DontAlignThisComment(Changes[I - 1].Tok)) { alignTrailingComments(StartOfSequence, I, MinColumn); // Reset to initial values, but skip this change for the next alignment // pass. MinColumn = 0; MaxColumn = INT_MAX; StartOfSequence = I + 1; } else if (BreakBeforeNext || Newlines > NewLineThreshold || (ChangeMinColumn > MaxColumn || ChangeMaxColumn < MinColumn) || // Break the comment sequence if the previous line did not end // in a trailing comment. (C.NewlinesBefore == 1 && I > 0 && !Changes[I - 1].IsTrailingComment) || WasAlignedWithStartOfNextLine) { alignTrailingComments(StartOfSequence, I, MinColumn); MinColumn = ChangeMinColumn; MaxColumn = ChangeMaxColumn; StartOfSequence = I; } else { MinColumn = std::max(MinColumn, ChangeMinColumn); MaxColumn = std::min(MaxColumn, ChangeMaxColumn); } BreakBeforeNext = (I == 0) || (C.NewlinesBefore > 1) || // Never start a sequence with a comment at the beginning // of the line. (C.NewlinesBefore == 1 && StartOfSequence == I); Newlines = 0; } alignTrailingComments(StartOfSequence, Size, MinColumn); } void WhitespaceManager::alignTrailingComments(unsigned Start, unsigned End, unsigned Column) { for (unsigned i = Start; i != End; ++i) { int Shift = 0; if (Changes[i].IsTrailingComment) Shift = Column - Changes[i].StartOfTokenColumn; if (Changes[i].StartOfBlockComment) { Shift = Changes[i].IndentationOffset + Changes[i].StartOfBlockComment->StartOfTokenColumn - Changes[i].StartOfTokenColumn; } if (Shift <= 0) continue; Changes[i].Spaces += Shift; if (i + 1 != Changes.size()) Changes[i + 1].PreviousEndOfTokenColumn += Shift; Changes[i].StartOfTokenColumn += Shift; } } void WhitespaceManager::alignEscapedNewlines() { const auto Align = Style.AlignEscapedNewlines; if (Align == FormatStyle::ENAS_DontAlign) return; const bool WithLastLine = Align == FormatStyle::ENAS_LeftWithLastLine; const bool AlignLeft = Align == FormatStyle::ENAS_Left || WithLastLine; const auto MaxColumn = Style.ColumnLimit; unsigned MaxEndOfLine = AlignLeft ? 0 : MaxColumn; unsigned StartOfMacro = 0; for (unsigned i = 1, e = Changes.size(); i < e; ++i) { Change &C = Changes[i]; if (C.NewlinesBefore == 0 && (!WithLastLine || C.Tok->isNot(tok::eof))) continue; const bool InPPDirective = C.ContinuesPPDirective; const auto BackslashColumn = C.PreviousEndOfTokenColumn + 2; if (InPPDirective || (WithLastLine && (MaxColumn == 0 || BackslashColumn <= MaxColumn))) { MaxEndOfLine = std::max(BackslashColumn, MaxEndOfLine); } if (!InPPDirective) { alignEscapedNewlines(StartOfMacro + 1, i, MaxEndOfLine); MaxEndOfLine = AlignLeft ? 0 : MaxColumn; StartOfMacro = i; } } alignEscapedNewlines(StartOfMacro + 1, Changes.size(), MaxEndOfLine); } void WhitespaceManager::alignEscapedNewlines(unsigned Start, unsigned End, unsigned Column) { for (unsigned i = Start; i < End; ++i) { Change &C = Changes[i]; if (C.NewlinesBefore > 0) { assert(C.ContinuesPPDirective); if (C.PreviousEndOfTokenColumn + 1 > Column) C.EscapedNewlineColumn = 0; else C.EscapedNewlineColumn = Column; } } } void WhitespaceManager::alignArrayInitializers() { if (Style.AlignArrayOfStructures == FormatStyle::AIAS_None) return; for (unsigned ChangeIndex = 1U, ChangeEnd = Changes.size(); ChangeIndex < ChangeEnd; ++ChangeIndex) { auto &C = Changes[ChangeIndex]; if (C.Tok->IsArrayInitializer) { bool FoundComplete = false; for (unsigned InsideIndex = ChangeIndex + 1; InsideIndex < ChangeEnd; ++InsideIndex) { if (Changes[InsideIndex].Tok == C.Tok->MatchingParen) { alignArrayInitializers(ChangeIndex, InsideIndex + 1); ChangeIndex = InsideIndex + 1; FoundComplete = true; break; } } if (!FoundComplete) ChangeIndex = ChangeEnd; } } } void WhitespaceManager::alignArrayInitializers(unsigned Start, unsigned End) { if (Style.AlignArrayOfStructures == FormatStyle::AIAS_Right) alignArrayInitializersRightJustified(getCells(Start, End)); else if (Style.AlignArrayOfStructures == FormatStyle::AIAS_Left) alignArrayInitializersLeftJustified(getCells(Start, End)); } void WhitespaceManager::alignArrayInitializersRightJustified( CellDescriptions &&CellDescs) { if (!CellDescs.isRectangular()) return; const int BracePadding = Style.Cpp11BracedListStyle ? 0 : 1; auto &Cells = CellDescs.Cells; // Now go through and fixup the spaces. auto *CellIter = Cells.begin(); for (auto i = 0U; i < CellDescs.CellCounts[0]; ++i, ++CellIter) { unsigned NetWidth = 0U; if (isSplitCell(*CellIter)) NetWidth = getNetWidth(Cells.begin(), CellIter, CellDescs.InitialSpaces); auto CellWidth = getMaximumCellWidth(CellIter, NetWidth); if (Changes[CellIter->Index].Tok->is(tok::r_brace)) { // So in here we want to see if there is a brace that falls // on a line that was split. If so on that line we make sure that // the spaces in front of the brace are enough. const auto *Next = CellIter; do { const FormatToken *Previous = Changes[Next->Index].Tok->Previous; if (Previous && Previous->isNot(TT_LineComment)) { Changes[Next->Index].Spaces = BracePadding; Changes[Next->Index].NewlinesBefore = 0; } Next = Next->NextColumnElement; } while (Next); // Unless the array is empty, we need the position of all the // immediately adjacent cells if (CellIter != Cells.begin()) { auto ThisNetWidth = getNetWidth(Cells.begin(), CellIter, CellDescs.InitialSpaces); auto MaxNetWidth = getMaximumNetWidth( Cells.begin(), CellIter, CellDescs.InitialSpaces, CellDescs.CellCounts[0], CellDescs.CellCounts.size()); if (ThisNetWidth < MaxNetWidth) Changes[CellIter->Index].Spaces = (MaxNetWidth - ThisNetWidth); auto RowCount = 1U; auto Offset = std::distance(Cells.begin(), CellIter); for (const auto *Next = CellIter->NextColumnElement; Next; Next = Next->NextColumnElement) { if (RowCount >= CellDescs.CellCounts.size()) break; auto *Start = (Cells.begin() + RowCount * CellDescs.CellCounts[0]); auto *End = Start + Offset; ThisNetWidth = getNetWidth(Start, End, CellDescs.InitialSpaces); if (ThisNetWidth < MaxNetWidth) Changes[Next->Index].Spaces = (MaxNetWidth - ThisNetWidth); ++RowCount; } } } else { auto ThisWidth = calculateCellWidth(CellIter->Index, CellIter->EndIndex, true) + NetWidth; if (Changes[CellIter->Index].NewlinesBefore == 0) { Changes[CellIter->Index].Spaces = (CellWidth - (ThisWidth + NetWidth)); Changes[CellIter->Index].Spaces += (i > 0) ? 1 : BracePadding; } alignToStartOfCell(CellIter->Index, CellIter->EndIndex); for (const auto *Next = CellIter->NextColumnElement; Next; Next = Next->NextColumnElement) { ThisWidth = calculateCellWidth(Next->Index, Next->EndIndex, true) + NetWidth; if (Changes[Next->Index].NewlinesBefore == 0) { Changes[Next->Index].Spaces = (CellWidth - ThisWidth); Changes[Next->Index].Spaces += (i > 0) ? 1 : BracePadding; } alignToStartOfCell(Next->Index, Next->EndIndex); } } } } void WhitespaceManager::alignArrayInitializersLeftJustified( CellDescriptions &&CellDescs) { if (!CellDescs.isRectangular()) return; const int BracePadding = Style.Cpp11BracedListStyle ? 0 : 1; auto &Cells = CellDescs.Cells; // Now go through and fixup the spaces. auto *CellIter = Cells.begin(); // The first cell of every row needs to be against the left brace. for (const auto *Next = CellIter; Next; Next = Next->NextColumnElement) { auto &Change = Changes[Next->Index]; Change.Spaces = Change.NewlinesBefore == 0 ? BracePadding : CellDescs.InitialSpaces; } ++CellIter; for (auto i = 1U; i < CellDescs.CellCounts[0]; i++, ++CellIter) { auto MaxNetWidth = getMaximumNetWidth( Cells.begin(), CellIter, CellDescs.InitialSpaces, CellDescs.CellCounts[0], CellDescs.CellCounts.size()); auto ThisNetWidth = getNetWidth(Cells.begin(), CellIter, CellDescs.InitialSpaces); if (Changes[CellIter->Index].NewlinesBefore == 0) { Changes[CellIter->Index].Spaces = MaxNetWidth - ThisNetWidth + (Changes[CellIter->Index].Tok->isNot(tok::r_brace) ? 1 : BracePadding); } auto RowCount = 1U; auto Offset = std::distance(Cells.begin(), CellIter); for (const auto *Next = CellIter->NextColumnElement; Next; Next = Next->NextColumnElement) { if (RowCount >= CellDescs.CellCounts.size()) break; auto *Start = (Cells.begin() + RowCount * CellDescs.CellCounts[0]); auto *End = Start + Offset; auto ThisNetWidth = getNetWidth(Start, End, CellDescs.InitialSpaces); if (Changes[Next->Index].NewlinesBefore == 0) { Changes[Next->Index].Spaces = MaxNetWidth - ThisNetWidth + (Changes[Next->Index].Tok->isNot(tok::r_brace) ? 1 : BracePadding); } ++RowCount; } } } bool WhitespaceManager::isSplitCell(const CellDescription &Cell) { if (Cell.HasSplit) return true; for (const auto *Next = Cell.NextColumnElement; Next; Next = Next->NextColumnElement) { if (Next->HasSplit) return true; } return false; } WhitespaceManager::CellDescriptions WhitespaceManager::getCells(unsigned Start, unsigned End) { unsigned Depth = 0; unsigned Cell = 0; SmallVector CellCounts; unsigned InitialSpaces = 0; unsigned InitialTokenLength = 0; unsigned EndSpaces = 0; SmallVector Cells; const FormatToken *MatchingParen = nullptr; for (unsigned i = Start; i < End; ++i) { auto &C = Changes[i]; if (C.Tok->is(tok::l_brace)) ++Depth; else if (C.Tok->is(tok::r_brace)) --Depth; if (Depth == 2) { if (C.Tok->is(tok::l_brace)) { Cell = 0; MatchingParen = C.Tok->MatchingParen; if (InitialSpaces == 0) { InitialSpaces = C.Spaces + C.TokenLength; InitialTokenLength = C.TokenLength; auto j = i - 1; for (; Changes[j].NewlinesBefore == 0 && j > Start; --j) { InitialSpaces += Changes[j].Spaces + Changes[j].TokenLength; InitialTokenLength += Changes[j].TokenLength; } if (C.NewlinesBefore == 0) { InitialSpaces += Changes[j].Spaces + Changes[j].TokenLength; InitialTokenLength += Changes[j].TokenLength; } } } else if (C.Tok->is(tok::comma)) { if (!Cells.empty()) Cells.back().EndIndex = i; if (const auto *Next = C.Tok->getNextNonComment(); Next && Next->isNot(tok::r_brace)) { // dangling comma ++Cell; } } } else if (Depth == 1) { if (C.Tok == MatchingParen) { if (!Cells.empty()) Cells.back().EndIndex = i; Cells.push_back(CellDescription{i, ++Cell, i + 1, false, nullptr}); CellCounts.push_back(C.Tok->Previous->isNot(tok::comma) ? Cell + 1 : Cell); // Go to the next non-comment and ensure there is a break in front const auto *NextNonComment = C.Tok->getNextNonComment(); while (NextNonComment && NextNonComment->is(tok::comma)) NextNonComment = NextNonComment->getNextNonComment(); auto j = i; while (j < End && Changes[j].Tok != NextNonComment) ++j; if (j < End && Changes[j].NewlinesBefore == 0 && Changes[j].Tok->isNot(tok::r_brace)) { Changes[j].NewlinesBefore = 1; // Account for the added token lengths Changes[j].Spaces = InitialSpaces - InitialTokenLength; } } else if (C.Tok->is(tok::comment) && C.Tok->NewlinesBefore == 0) { // Trailing comments stay at a space past the last token C.Spaces = Changes[i - 1].Tok->is(tok::comma) ? 1 : 2; } else if (C.Tok->is(tok::l_brace)) { // We need to make sure that the ending braces is aligned to the // start of our initializer auto j = i - 1; for (; j > 0 && !Changes[j].Tok->ArrayInitializerLineStart; --j) ; // Nothing the loop does the work EndSpaces = Changes[j].Spaces; } } else if (Depth == 0 && C.Tok->is(tok::r_brace)) { C.NewlinesBefore = 1; C.Spaces = EndSpaces; } if (C.Tok->StartsColumn) { // This gets us past tokens that have been split over multiple // lines bool HasSplit = false; if (Changes[i].NewlinesBefore > 0) { // So if we split a line previously and the tail line + this token is // less then the column limit we remove the split here and just put // the column start at a space past the comma // // FIXME This if branch covers the cases where the column is not // the first column. This leads to weird pathologies like the formatting // auto foo = Items{ // Section{ // 0, bar(), // } // }; // Well if it doesn't lead to that it's indicative that the line // breaking should be revisited. Unfortunately alot of other options // interact with this auto j = i - 1; if ((j - 1) > Start && Changes[j].Tok->is(tok::comma) && Changes[j - 1].NewlinesBefore > 0) { --j; auto LineLimit = Changes[j].Spaces + Changes[j].TokenLength; if (LineLimit < Style.ColumnLimit) { Changes[i].NewlinesBefore = 0; Changes[i].Spaces = 1; } } } while (Changes[i].NewlinesBefore > 0 && Changes[i].Tok == C.Tok) { Changes[i].Spaces = InitialSpaces; ++i; HasSplit = true; } if (Changes[i].Tok != C.Tok) --i; Cells.push_back(CellDescription{i, Cell, i, HasSplit, nullptr}); } } return linkCells({Cells, CellCounts, InitialSpaces}); } unsigned WhitespaceManager::calculateCellWidth(unsigned Start, unsigned End, bool WithSpaces) const { unsigned CellWidth = 0; for (auto i = Start; i < End; i++) { if (Changes[i].NewlinesBefore > 0) CellWidth = 0; CellWidth += Changes[i].TokenLength; CellWidth += (WithSpaces ? Changes[i].Spaces : 0); } return CellWidth; } void WhitespaceManager::alignToStartOfCell(unsigned Start, unsigned End) { if ((End - Start) <= 1) return; // If the line is broken anywhere in there make sure everything // is aligned to the parent for (auto i = Start + 1; i < End; i++) if (Changes[i].NewlinesBefore > 0) Changes[i].Spaces = Changes[Start].Spaces; } WhitespaceManager::CellDescriptions WhitespaceManager::linkCells(CellDescriptions &&CellDesc) { auto &Cells = CellDesc.Cells; for (auto *CellIter = Cells.begin(); CellIter != Cells.end(); ++CellIter) { if (!CellIter->NextColumnElement && (CellIter + 1) != Cells.end()) { for (auto *NextIter = CellIter + 1; NextIter != Cells.end(); ++NextIter) { if (NextIter->Cell == CellIter->Cell) { CellIter->NextColumnElement = &(*NextIter); break; } } } } return std::move(CellDesc); } void WhitespaceManager::generateChanges() { for (unsigned i = 0, e = Changes.size(); i != e; ++i) { const Change &C = Changes[i]; if (i > 0) { auto Last = Changes[i - 1].OriginalWhitespaceRange; auto New = Changes[i].OriginalWhitespaceRange; // Do not generate two replacements for the same location. As a special // case, it is allowed if there is a replacement for the empty range // between 2 tokens and another non-empty range at the start of the second // token. We didn't implement logic to combine replacements for 2 // consecutive source ranges into a single replacement, because the // program works fine without it. // // We can't eliminate empty original whitespace ranges. They appear when // 2 tokens have no whitespace in between in the input. It does not // matter whether whitespace is to be added. If no whitespace is to be // added, the replacement will be empty, and it gets eliminated after this // step in storeReplacement. For example, if the input is `foo();`, // there will be a replacement for the range between every consecutive // pair of tokens. // // A replacement at the start of a token can be added by // BreakableStringLiteralUsingOperators::insertBreak when it adds braces // around the string literal. Say Verilog code is being formatted and the // first line is to become the next 2 lines. // x("long string"); // x({"long ", // "string"}); // There will be a replacement for the empty range between the parenthesis // and the string and another replacement for the quote character. The // replacement for the empty range between the parenthesis and the quote // comes from ContinuationIndenter::addTokenOnCurrentLine when it changes // the original empty range between the parenthesis and the string to // another empty one. The replacement for the quote character comes from // BreakableStringLiteralUsingOperators::insertBreak when it adds the // brace. In the example, the replacement for the empty range is the same // as the original text. However, eliminating replacements that are same // as the original does not help in general. For example, a newline can // be inserted, causing the first line to become the next 3 lines. // xxxxxxxxxxx("long string"); // xxxxxxxxxxx( // {"long ", // "string"}); // In that case, the empty range between the parenthesis and the string // will be replaced by a newline and 4 spaces. So we will still have to // deal with a replacement for an empty source range followed by a // replacement for a non-empty source range. if (Last.getBegin() == New.getBegin() && (Last.getEnd() != Last.getBegin() || New.getEnd() == New.getBegin())) { continue; } } if (C.CreateReplacement) { std::string ReplacementText = C.PreviousLinePostfix; if (C.ContinuesPPDirective) { appendEscapedNewlineText(ReplacementText, C.NewlinesBefore, C.PreviousEndOfTokenColumn, C.EscapedNewlineColumn); } else { appendNewlineText(ReplacementText, C.NewlinesBefore); } // FIXME: This assert should hold if we computed the column correctly. // assert((int)C.StartOfTokenColumn >= C.Spaces); appendIndentText( ReplacementText, C.Tok->IndentLevel, std::max(0, C.Spaces), std::max((int)C.StartOfTokenColumn, C.Spaces) - std::max(0, C.Spaces), C.IsAligned); ReplacementText.append(C.CurrentLinePrefix); storeReplacement(C.OriginalWhitespaceRange, ReplacementText); } } } void WhitespaceManager::storeReplacement(SourceRange Range, StringRef Text) { unsigned WhitespaceLength = SourceMgr.getFileOffset(Range.getEnd()) - SourceMgr.getFileOffset(Range.getBegin()); // Don't create a replacement, if it does not change anything. if (StringRef(SourceMgr.getCharacterData(Range.getBegin()), WhitespaceLength) == Text) { return; } auto Err = Replaces.add(tooling::Replacement( SourceMgr, CharSourceRange::getCharRange(Range), Text)); // FIXME: better error handling. For now, just print an error message in the // release version. if (Err) { llvm::errs() << llvm::toString(std::move(Err)) << "\n"; assert(false); } } void WhitespaceManager::appendNewlineText(std::string &Text, unsigned Newlines) { if (UseCRLF) { Text.reserve(Text.size() + 2 * Newlines); for (unsigned i = 0; i < Newlines; ++i) Text.append("\r\n"); } else { Text.append(Newlines, '\n'); } } void WhitespaceManager::appendEscapedNewlineText( std::string &Text, unsigned Newlines, unsigned PreviousEndOfTokenColumn, unsigned EscapedNewlineColumn) { if (Newlines > 0) { unsigned Spaces = std::max(1, EscapedNewlineColumn - PreviousEndOfTokenColumn - 1); for (unsigned i = 0; i < Newlines; ++i) { Text.append(Spaces, ' '); Text.append(UseCRLF ? "\\\r\n" : "\\\n"); Spaces = std::max(0, EscapedNewlineColumn - 1); } } } void WhitespaceManager::appendIndentText(std::string &Text, unsigned IndentLevel, unsigned Spaces, unsigned WhitespaceStartColumn, bool IsAligned) { switch (Style.UseTab) { case FormatStyle::UT_Never: Text.append(Spaces, ' '); break; case FormatStyle::UT_Always: { if (Style.TabWidth) { unsigned FirstTabWidth = Style.TabWidth - WhitespaceStartColumn % Style.TabWidth; // Insert only spaces when we want to end up before the next tab. if (Spaces < FirstTabWidth || Spaces == 1) { Text.append(Spaces, ' '); break; } // Align to the next tab. Spaces -= FirstTabWidth; Text.append("\t"); Text.append(Spaces / Style.TabWidth, '\t'); Text.append(Spaces % Style.TabWidth, ' '); } else if (Spaces == 1) { Text.append(Spaces, ' '); } break; } case FormatStyle::UT_ForIndentation: if (WhitespaceStartColumn == 0) { unsigned Indentation = IndentLevel * Style.IndentWidth; Spaces = appendTabIndent(Text, Spaces, Indentation); } Text.append(Spaces, ' '); break; case FormatStyle::UT_ForContinuationAndIndentation: if (WhitespaceStartColumn == 0) Spaces = appendTabIndent(Text, Spaces, Spaces); Text.append(Spaces, ' '); break; case FormatStyle::UT_AlignWithSpaces: if (WhitespaceStartColumn == 0) { unsigned Indentation = IsAligned ? IndentLevel * Style.IndentWidth : Spaces; Spaces = appendTabIndent(Text, Spaces, Indentation); } Text.append(Spaces, ' '); break; } } unsigned WhitespaceManager::appendTabIndent(std::string &Text, unsigned Spaces, unsigned Indentation) { // This happens, e.g. when a line in a block comment is indented less than the // first one. if (Indentation > Spaces) Indentation = Spaces; if (Style.TabWidth) { unsigned Tabs = Indentation / Style.TabWidth; Text.append(Tabs, '\t'); Spaces -= Tabs * Style.TabWidth; } return Spaces; } } // namespace format } // namespace clang