//===--- Gnu.cpp - Gnu Tool and ToolChain Implementations -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Gnu.h" #include "Arch/ARM.h" #include "Arch/CSKY.h" #include "Arch/LoongArch.h" #include "Arch/Mips.h" #include "Arch/PPC.h" #include "Arch/RISCV.h" #include "Arch/Sparc.h" #include "Arch/SystemZ.h" #include "CommonArgs.h" #include "Linux.h" #include "clang/Config/config.h" // for GCC_INSTALL_PREFIX #include "clang/Driver/Compilation.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/MultilibBuilder.h" #include "clang/Driver/Options.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/Twine.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Path.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/TargetParser/RISCVISAInfo.h" #include "llvm/TargetParser/TargetParser.h" #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang; using namespace llvm::opt; using tools::addMultilibFlag; using tools::addPathIfExists; static bool forwardToGCC(const Option &O) { // LinkerInput options have been forwarded. Don't duplicate. if (O.hasFlag(options::LinkerInput)) return false; return O.matches(options::OPT_Link_Group) || O.hasFlag(options::LinkOption); } // Switch CPU names not recognized by GNU assembler to a close CPU that it does // recognize, instead of a lower march from being picked in the absence of a cpu // flag. static void normalizeCPUNamesForAssembler(const ArgList &Args, ArgStringList &CmdArgs) { if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) { StringRef CPUArg(A->getValue()); if (CPUArg.equals_insensitive("krait")) CmdArgs.push_back("-mcpu=cortex-a15"); else if (CPUArg.equals_insensitive("kryo")) CmdArgs.push_back("-mcpu=cortex-a57"); else Args.AddLastArg(CmdArgs, options::OPT_mcpu_EQ); } } void tools::gcc::Common::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const Driver &D = getToolChain().getDriver(); ArgStringList CmdArgs; for (const auto &A : Args) { if (forwardToGCC(A->getOption())) { // It is unfortunate that we have to claim here, as this means // we will basically never report anything interesting for // platforms using a generic gcc, even if we are just using gcc // to get to the assembler. A->claim(); A->render(Args, CmdArgs); } } RenderExtraToolArgs(JA, CmdArgs); // If using a driver, force the arch. if (getToolChain().getTriple().isOSDarwin()) { CmdArgs.push_back("-arch"); CmdArgs.push_back( Args.MakeArgString(getToolChain().getDefaultUniversalArchName())); } // Try to force gcc to match the tool chain we want, if we recognize // the arch. // // FIXME: The triple class should directly provide the information we want // here. switch (getToolChain().getArch()) { default: break; case llvm::Triple::x86: case llvm::Triple::ppc: case llvm::Triple::ppcle: CmdArgs.push_back("-m32"); break; case llvm::Triple::x86_64: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: CmdArgs.push_back("-m64"); break; case llvm::Triple::sparcel: CmdArgs.push_back("-EL"); break; } assert((Output.isFilename() || Output.isNothing()) && "Invalid output."); if (Output.isFilename()) { CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); } else { CmdArgs.push_back("-fsyntax-only"); } Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler); // Only pass -x if gcc will understand it; otherwise hope gcc // understands the suffix correctly. The main use case this would go // wrong in is for linker inputs if they happened to have an odd // suffix; really the only way to get this to happen is a command // like '-x foobar a.c' which will treat a.c like a linker input. // // FIXME: For the linker case specifically, can we safely convert // inputs into '-Wl,' options? for (const auto &II : Inputs) { // Don't try to pass LLVM or AST inputs to a generic gcc. if (types::isLLVMIR(II.getType())) D.Diag(clang::diag::err_drv_no_linker_llvm_support) << getToolChain().getTripleString(); else if (II.getType() == types::TY_AST) D.Diag(diag::err_drv_no_ast_support) << getToolChain().getTripleString(); else if (II.getType() == types::TY_ModuleFile) D.Diag(diag::err_drv_no_module_support) << getToolChain().getTripleString(); if (types::canTypeBeUserSpecified(II.getType())) { CmdArgs.push_back("-x"); CmdArgs.push_back(types::getTypeName(II.getType())); } if (II.isFilename()) CmdArgs.push_back(II.getFilename()); else { const Arg &A = II.getInputArg(); // Reverse translate some rewritten options. if (A.getOption().matches(options::OPT_Z_reserved_lib_stdcxx)) { CmdArgs.push_back("-lstdc++"); continue; } // Don't render as input, we need gcc to do the translations. A.render(Args, CmdArgs); } } const std::string &customGCCName = D.getCCCGenericGCCName(); const char *GCCName; if (!customGCCName.empty()) GCCName = customGCCName.c_str(); else if (D.CCCIsCXX()) { GCCName = "g++"; } else GCCName = "gcc"; const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath(GCCName)); C.addCommand(std::make_unique(JA, *this, ResponseFileSupport::AtFileCurCP(), Exec, CmdArgs, Inputs, Output)); } void tools::gcc::Preprocessor::RenderExtraToolArgs( const JobAction &JA, ArgStringList &CmdArgs) const { CmdArgs.push_back("-E"); } void tools::gcc::Compiler::RenderExtraToolArgs(const JobAction &JA, ArgStringList &CmdArgs) const { const Driver &D = getToolChain().getDriver(); switch (JA.getType()) { // If -flto, etc. are present then make sure not to force assembly output. case types::TY_LLVM_IR: case types::TY_LTO_IR: case types::TY_LLVM_BC: case types::TY_LTO_BC: CmdArgs.push_back("-c"); break; // We assume we've got an "integrated" assembler in that gcc will produce an // object file itself. case types::TY_Object: CmdArgs.push_back("-c"); break; case types::TY_PP_Asm: CmdArgs.push_back("-S"); break; case types::TY_Nothing: CmdArgs.push_back("-fsyntax-only"); break; default: D.Diag(diag::err_drv_invalid_gcc_output_type) << getTypeName(JA.getType()); } } void tools::gcc::Linker::RenderExtraToolArgs(const JobAction &JA, ArgStringList &CmdArgs) const { // The types are (hopefully) good enough. } static const char *getLDMOption(const llvm::Triple &T, const ArgList &Args) { switch (T.getArch()) { case llvm::Triple::x86: if (T.isOSIAMCU()) return "elf_iamcu"; return "elf_i386"; case llvm::Triple::aarch64: return "aarch64linux"; case llvm::Triple::aarch64_be: return "aarch64linuxb"; case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::armeb: case llvm::Triple::thumbeb: return tools::arm::isARMBigEndian(T, Args) ? "armelfb_linux_eabi" : "armelf_linux_eabi"; case llvm::Triple::m68k: return "m68kelf"; case llvm::Triple::ppc: if (T.isOSLinux()) return "elf32ppclinux"; return "elf32ppc"; case llvm::Triple::ppcle: if (T.isOSLinux()) return "elf32lppclinux"; return "elf32lppc"; case llvm::Triple::ppc64: return "elf64ppc"; case llvm::Triple::ppc64le: return "elf64lppc"; case llvm::Triple::riscv32: return "elf32lriscv"; case llvm::Triple::riscv64: return "elf64lriscv"; case llvm::Triple::sparc: case llvm::Triple::sparcel: return "elf32_sparc"; case llvm::Triple::sparcv9: return "elf64_sparc"; case llvm::Triple::loongarch32: return "elf32loongarch"; case llvm::Triple::loongarch64: return "elf64loongarch"; case llvm::Triple::mips: return "elf32btsmip"; case llvm::Triple::mipsel: return "elf32ltsmip"; case llvm::Triple::mips64: if (tools::mips::hasMipsAbiArg(Args, "n32") || T.getEnvironment() == llvm::Triple::GNUABIN32) return "elf32btsmipn32"; return "elf64btsmip"; case llvm::Triple::mips64el: if (tools::mips::hasMipsAbiArg(Args, "n32") || T.getEnvironment() == llvm::Triple::GNUABIN32) return "elf32ltsmipn32"; return "elf64ltsmip"; case llvm::Triple::systemz: return "elf64_s390"; case llvm::Triple::x86_64: if (T.isX32()) return "elf32_x86_64"; return "elf_x86_64"; case llvm::Triple::ve: return "elf64ve"; case llvm::Triple::csky: return "cskyelf_linux"; default: return nullptr; } } static bool getStaticPIE(const ArgList &Args, const ToolChain &TC) { bool HasStaticPIE = Args.hasArg(options::OPT_static_pie); if (HasStaticPIE && Args.hasArg(options::OPT_no_pie)) { const Driver &D = TC.getDriver(); const llvm::opt::OptTable &Opts = D.getOpts(); StringRef StaticPIEName = Opts.getOptionName(options::OPT_static_pie); StringRef NoPIEName = Opts.getOptionName(options::OPT_nopie); D.Diag(diag::err_drv_cannot_mix_options) << StaticPIEName << NoPIEName; } return HasStaticPIE; } static bool getStatic(const ArgList &Args) { return Args.hasArg(options::OPT_static) && !Args.hasArg(options::OPT_static_pie); } void tools::gnutools::StaticLibTool::ConstructJob( Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const Driver &D = getToolChain().getDriver(); // Silence warning for "clang -g foo.o -o foo" Args.ClaimAllArgs(options::OPT_g_Group); // and "clang -emit-llvm foo.o -o foo" Args.ClaimAllArgs(options::OPT_emit_llvm); // and for "clang -w foo.o -o foo". Other warning options are already // handled somewhere else. Args.ClaimAllArgs(options::OPT_w); // Silence warnings when linking C code with a C++ '-stdlib' argument. Args.ClaimAllArgs(options::OPT_stdlib_EQ); // ar tool command "llvm-ar ". ArgStringList CmdArgs; // Create and insert file members with a deterministic index. CmdArgs.push_back("rcsD"); CmdArgs.push_back(Output.getFilename()); for (const auto &II : Inputs) { if (II.isFilename()) { CmdArgs.push_back(II.getFilename()); } } // Delete old output archive file if it already exists before generating a new // archive file. auto OutputFileName = Output.getFilename(); if (Output.isFilename() && llvm::sys::fs::exists(OutputFileName)) { if (std::error_code EC = llvm::sys::fs::remove(OutputFileName)) { D.Diag(diag::err_drv_unable_to_remove_file) << EC.message(); return; } } const char *Exec = Args.MakeArgString(getToolChain().GetStaticLibToolPath()); C.addCommand(std::make_unique(JA, *this, ResponseFileSupport::AtFileCurCP(), Exec, CmdArgs, Inputs, Output)); } void tools::gnutools::Linker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { // FIXME: The Linker class constructor takes a ToolChain and not a // Generic_ELF, so the static_cast might return a reference to a invalid // instance (see PR45061). Ideally, the Linker constructor needs to take a // Generic_ELF instead. const auto &ToolChain = static_cast(getToolChain()); const Driver &D = ToolChain.getDriver(); const llvm::Triple &Triple = getToolChain().getEffectiveTriple(); const llvm::Triple::ArchType Arch = ToolChain.getArch(); const bool isOHOSFamily = ToolChain.getTriple().isOHOSFamily(); const bool isAndroid = ToolChain.getTriple().isAndroid(); const bool IsIAMCU = ToolChain.getTriple().isOSIAMCU(); const bool IsVE = ToolChain.getTriple().isVE(); const bool IsStaticPIE = getStaticPIE(Args, ToolChain); const bool IsStatic = getStatic(Args); const bool HasCRTBeginEndFiles = ToolChain.getTriple().hasEnvironment() || (ToolChain.getTriple().getVendor() != llvm::Triple::MipsTechnologies); ArgStringList CmdArgs; // Silence warning for "clang -g foo.o -o foo" Args.ClaimAllArgs(options::OPT_g_Group); // and "clang -emit-llvm foo.o -o foo" Args.ClaimAllArgs(options::OPT_emit_llvm); // and for "clang -w foo.o -o foo". Other warning options are already // handled somewhere else. Args.ClaimAllArgs(options::OPT_w); if (!D.SysRoot.empty()) CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot)); if (Args.hasArg(options::OPT_s)) CmdArgs.push_back("-s"); if (Triple.isARM() || Triple.isThumb()) { bool IsBigEndian = arm::isARMBigEndian(Triple, Args); if (IsBigEndian) arm::appendBE8LinkFlag(Args, CmdArgs, Triple); CmdArgs.push_back(IsBigEndian ? "-EB" : "-EL"); } else if (Triple.isAArch64()) { CmdArgs.push_back(Arch == llvm::Triple::aarch64_be ? "-EB" : "-EL"); } // Most Android ARM64 targets should enable the linker fix for erratum // 843419. Only non-Cortex-A53 devices are allowed to skip this flag. if (Arch == llvm::Triple::aarch64 && (isAndroid || isOHOSFamily)) { std::string CPU = getCPUName(D, Args, Triple); if (CPU.empty() || CPU == "generic" || CPU == "cortex-a53") CmdArgs.push_back("--fix-cortex-a53-843419"); } ToolChain.addExtraOpts(CmdArgs); CmdArgs.push_back("--eh-frame-hdr"); if (const char *LDMOption = getLDMOption(ToolChain.getTriple(), Args)) { CmdArgs.push_back("-m"); CmdArgs.push_back(LDMOption); } else { D.Diag(diag::err_target_unknown_triple) << Triple.str(); return; } if (Triple.isRISCV()) { CmdArgs.push_back("-X"); if (Args.hasArg(options::OPT_mno_relax)) CmdArgs.push_back("--no-relax"); } const bool IsShared = Args.hasArg(options::OPT_shared); if (IsShared) CmdArgs.push_back("-shared"); bool IsPIE = false; if (IsStaticPIE) { CmdArgs.push_back("-static"); CmdArgs.push_back("-pie"); CmdArgs.push_back("--no-dynamic-linker"); CmdArgs.push_back("-z"); CmdArgs.push_back("text"); } else if (IsStatic) { CmdArgs.push_back("-static"); } else if (!Args.hasArg(options::OPT_r)) { if (Args.hasArg(options::OPT_rdynamic)) CmdArgs.push_back("-export-dynamic"); if (!IsShared) { IsPIE = Args.hasFlag(options::OPT_pie, options::OPT_no_pie, ToolChain.isPIEDefault(Args)); if (IsPIE) CmdArgs.push_back("-pie"); CmdArgs.push_back("-dynamic-linker"); CmdArgs.push_back(Args.MakeArgString(Twine(D.DyldPrefix) + ToolChain.getDynamicLinker(Args))); } } CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); if (!Args.hasArg(options::OPT_nostdlib, options::OPT_nostartfiles, options::OPT_r)) { if (!isAndroid && !IsIAMCU) { const char *crt1 = nullptr; if (!Args.hasArg(options::OPT_shared)) { if (Args.hasArg(options::OPT_pg)) crt1 = "gcrt1.o"; else if (IsPIE) crt1 = "Scrt1.o"; else if (IsStaticPIE) crt1 = "rcrt1.o"; else crt1 = "crt1.o"; } if (crt1) CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crt1))); CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crti.o"))); } if (IsVE) { CmdArgs.push_back("-z"); CmdArgs.push_back("max-page-size=0x4000000"); } if (IsIAMCU) CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crt0.o"))); else if (HasCRTBeginEndFiles) { std::string P; if (ToolChain.GetRuntimeLibType(Args) == ToolChain::RLT_CompilerRT && !isAndroid) { std::string crtbegin = ToolChain.getCompilerRT(Args, "crtbegin", ToolChain::FT_Object); if (ToolChain.getVFS().exists(crtbegin)) P = crtbegin; } if (P.empty()) { const char *crtbegin; if (Args.hasArg(options::OPT_shared)) crtbegin = isAndroid ? "crtbegin_so.o" : "crtbeginS.o"; else if (IsStatic) crtbegin = isAndroid ? "crtbegin_static.o" : "crtbeginT.o"; else if (IsPIE || IsStaticPIE) crtbegin = isAndroid ? "crtbegin_dynamic.o" : "crtbeginS.o"; else crtbegin = isAndroid ? "crtbegin_dynamic.o" : "crtbegin.o"; P = ToolChain.GetFilePath(crtbegin); } CmdArgs.push_back(Args.MakeArgString(P)); } // Add crtfastmath.o if available and fast math is enabled. ToolChain.addFastMathRuntimeIfAvailable(Args, CmdArgs); if (isAndroid && Args.hasFlag(options::OPT_fandroid_pad_segment, options::OPT_fno_android_pad_segment, false)) CmdArgs.push_back( Args.MakeArgString(ToolChain.GetFilePath("crt_pad_segment.o"))); } Args.addAllArgs(CmdArgs, {options::OPT_L, options::OPT_u}); ToolChain.AddFilePathLibArgs(Args, CmdArgs); if (D.isUsingLTO()) { assert(!Inputs.empty() && "Must have at least one input."); // Find the first filename InputInfo object. auto Input = llvm::find_if( Inputs, [](const InputInfo &II) -> bool { return II.isFilename(); }); if (Input == Inputs.end()) // For a very rare case, all of the inputs to the linker are // InputArg. If that happens, just use the first InputInfo. Input = Inputs.begin(); addLTOOptions(ToolChain, Args, CmdArgs, Output, *Input, D.getLTOMode() == LTOK_Thin); } if (Args.hasArg(options::OPT_Z_Xlinker__no_demangle)) CmdArgs.push_back("--no-demangle"); bool NeedsSanitizerDeps = addSanitizerRuntimes(ToolChain, Args, CmdArgs); bool NeedsXRayDeps = addXRayRuntime(ToolChain, Args, CmdArgs); addLinkerCompressDebugSectionsOption(ToolChain, Args, CmdArgs); AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs, JA); addHIPRuntimeLibArgs(ToolChain, C, Args, CmdArgs); // The profile runtime also needs access to system libraries. getToolChain().addProfileRTLibs(Args, CmdArgs); if (D.CCCIsCXX() && !Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs, options::OPT_r)) { if (ToolChain.ShouldLinkCXXStdlib(Args)) { bool OnlyLibstdcxxStatic = Args.hasArg(options::OPT_static_libstdcxx) && !Args.hasArg(options::OPT_static); if (OnlyLibstdcxxStatic) CmdArgs.push_back("-Bstatic"); ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs); if (OnlyLibstdcxxStatic) CmdArgs.push_back("-Bdynamic"); } CmdArgs.push_back("-lm"); } // Silence warnings when linking C code with a C++ '-stdlib' argument. Args.ClaimAllArgs(options::OPT_stdlib_EQ); // Additional linker set-up and flags for Fortran. This is required in order // to generate executables. As Fortran runtime depends on the C runtime, // these dependencies need to be listed before the C runtime below (i.e. // AddRunTimeLibs). if (D.IsFlangMode()) { addFortranRuntimeLibraryPath(ToolChain, Args, CmdArgs); addFortranRuntimeLibs(ToolChain, Args, CmdArgs); CmdArgs.push_back("-lm"); } if (!Args.hasArg(options::OPT_nostdlib, options::OPT_r)) { if (!Args.hasArg(options::OPT_nodefaultlibs)) { if (IsStatic || IsStaticPIE) CmdArgs.push_back("--start-group"); if (NeedsSanitizerDeps) linkSanitizerRuntimeDeps(ToolChain, Args, CmdArgs); if (NeedsXRayDeps) linkXRayRuntimeDeps(ToolChain, Args, CmdArgs); bool WantPthread = Args.hasArg(options::OPT_pthread) || Args.hasArg(options::OPT_pthreads); // Use the static OpenMP runtime with -static-openmp bool StaticOpenMP = Args.hasArg(options::OPT_static_openmp) && !Args.hasArg(options::OPT_static); // FIXME: Only pass GompNeedsRT = true for platforms with libgomp that // require librt. Most modern Linux platforms do, but some may not. if (addOpenMPRuntime(C, CmdArgs, ToolChain, Args, StaticOpenMP, JA.isHostOffloading(Action::OFK_OpenMP), /* GompNeedsRT= */ true)) // OpenMP runtimes implies pthreads when using the GNU toolchain. // FIXME: Does this really make sense for all GNU toolchains? WantPthread = true; AddRunTimeLibs(ToolChain, D, CmdArgs, Args); // LLVM support for atomics on 32-bit SPARC V8+ is incomplete, so // forcibly link with libatomic as a workaround. // TODO: Issue #41880 and D118021. if (getToolChain().getTriple().getArch() == llvm::Triple::sparc) { CmdArgs.push_back("--push-state"); CmdArgs.push_back("--as-needed"); CmdArgs.push_back("-latomic"); CmdArgs.push_back("--pop-state"); } // We don't need libpthread neither for bionic (Android) nor for musl, // (used by OHOS as runtime library). if (WantPthread && !isAndroid && !isOHOSFamily) CmdArgs.push_back("-lpthread"); if (Args.hasArg(options::OPT_fsplit_stack)) CmdArgs.push_back("--wrap=pthread_create"); if (!Args.hasArg(options::OPT_nolibc)) CmdArgs.push_back("-lc"); // Add IAMCU specific libs, if needed. if (IsIAMCU) CmdArgs.push_back("-lgloss"); if (IsStatic || IsStaticPIE) CmdArgs.push_back("--end-group"); else AddRunTimeLibs(ToolChain, D, CmdArgs, Args); // Add IAMCU specific libs (outside the group), if needed. if (IsIAMCU) { CmdArgs.push_back("--as-needed"); CmdArgs.push_back("-lsoftfp"); CmdArgs.push_back("--no-as-needed"); } } if (!Args.hasArg(options::OPT_nostartfiles) && !IsIAMCU) { if (HasCRTBeginEndFiles) { std::string P; if (ToolChain.GetRuntimeLibType(Args) == ToolChain::RLT_CompilerRT && !isAndroid) { std::string crtend = ToolChain.getCompilerRT(Args, "crtend", ToolChain::FT_Object); if (ToolChain.getVFS().exists(crtend)) P = crtend; } if (P.empty()) { const char *crtend; if (Args.hasArg(options::OPT_shared)) crtend = isAndroid ? "crtend_so.o" : "crtendS.o"; else if (IsPIE || IsStaticPIE) crtend = isAndroid ? "crtend_android.o" : "crtendS.o"; else crtend = isAndroid ? "crtend_android.o" : "crtend.o"; P = ToolChain.GetFilePath(crtend); } CmdArgs.push_back(Args.MakeArgString(P)); } if (!isAndroid) CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtn.o"))); } } Args.AddAllArgs(CmdArgs, options::OPT_T); const char *Exec = Args.MakeArgString(ToolChain.GetLinkerPath()); C.addCommand(std::make_unique(JA, *this, ResponseFileSupport::AtFileCurCP(), Exec, CmdArgs, Inputs, Output)); } void tools::gnutools::Assembler::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &D = getToolChain().getDriver(); claimNoWarnArgs(Args); ArgStringList CmdArgs; llvm::Reloc::Model RelocationModel; unsigned PICLevel; bool IsPIE; const char *DefaultAssembler = "as"; // Enforce GNU as on Solaris; the native assembler's input syntax isn't fully // compatible. if (getToolChain().getTriple().isOSSolaris()) DefaultAssembler = "gas"; std::tie(RelocationModel, PICLevel, IsPIE) = ParsePICArgs(getToolChain(), Args); if (const Arg *A = Args.getLastArg(options::OPT_gz, options::OPT_gz_EQ)) { if (A->getOption().getID() == options::OPT_gz) { CmdArgs.push_back("--compress-debug-sections"); } else { StringRef Value = A->getValue(); if (Value == "none" || Value == "zlib" || Value == "zstd") { CmdArgs.push_back( Args.MakeArgString("--compress-debug-sections=" + Twine(Value))); } else { D.Diag(diag::err_drv_unsupported_option_argument) << A->getSpelling() << Value; } } } switch (getToolChain().getArch()) { default: break; // Add --32/--64 to make sure we get the format we want. // This is incomplete case llvm::Triple::x86: CmdArgs.push_back("--32"); break; case llvm::Triple::x86_64: if (getToolChain().getTriple().isX32()) CmdArgs.push_back("--x32"); else CmdArgs.push_back("--64"); break; case llvm::Triple::ppc: { CmdArgs.push_back("-a32"); CmdArgs.push_back("-mppc"); CmdArgs.push_back("-mbig-endian"); CmdArgs.push_back(ppc::getPPCAsmModeForCPU( getCPUName(D, Args, getToolChain().getTriple()))); break; } case llvm::Triple::ppcle: { CmdArgs.push_back("-a32"); CmdArgs.push_back("-mppc"); CmdArgs.push_back("-mlittle-endian"); CmdArgs.push_back(ppc::getPPCAsmModeForCPU( getCPUName(D, Args, getToolChain().getTriple()))); break; } case llvm::Triple::ppc64: { CmdArgs.push_back("-a64"); CmdArgs.push_back("-mppc64"); CmdArgs.push_back("-mbig-endian"); CmdArgs.push_back(ppc::getPPCAsmModeForCPU( getCPUName(D, Args, getToolChain().getTriple()))); break; } case llvm::Triple::ppc64le: { CmdArgs.push_back("-a64"); CmdArgs.push_back("-mppc64"); CmdArgs.push_back("-mlittle-endian"); CmdArgs.push_back(ppc::getPPCAsmModeForCPU( getCPUName(D, Args, getToolChain().getTriple()))); break; } case llvm::Triple::riscv32: case llvm::Triple::riscv64: { StringRef ABIName = riscv::getRISCVABI(Args, getToolChain().getTriple()); CmdArgs.push_back("-mabi"); CmdArgs.push_back(ABIName.data()); std::string MArchName = riscv::getRISCVArch(Args, getToolChain().getTriple()); CmdArgs.push_back("-march"); CmdArgs.push_back(Args.MakeArgString(MArchName)); if (!Args.hasFlag(options::OPT_mrelax, options::OPT_mno_relax, true)) Args.addOptOutFlag(CmdArgs, options::OPT_mrelax, options::OPT_mno_relax); break; } case llvm::Triple::sparc: case llvm::Triple::sparcel: { CmdArgs.push_back("-32"); std::string CPU = getCPUName(D, Args, getToolChain().getTriple()); CmdArgs.push_back( sparc::getSparcAsmModeForCPU(CPU, getToolChain().getTriple())); AddAssemblerKPIC(getToolChain(), Args, CmdArgs); break; } case llvm::Triple::sparcv9: { CmdArgs.push_back("-64"); std::string CPU = getCPUName(D, Args, getToolChain().getTriple()); CmdArgs.push_back( sparc::getSparcAsmModeForCPU(CPU, getToolChain().getTriple())); AddAssemblerKPIC(getToolChain(), Args, CmdArgs); break; } case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: { const llvm::Triple &Triple2 = getToolChain().getTriple(); CmdArgs.push_back(arm::isARMBigEndian(Triple2, Args) ? "-EB" : "-EL"); switch (Triple2.getSubArch()) { case llvm::Triple::ARMSubArch_v7: CmdArgs.push_back("-mfpu=neon"); break; case llvm::Triple::ARMSubArch_v8: CmdArgs.push_back("-mfpu=crypto-neon-fp-armv8"); break; default: break; } switch (arm::getARMFloatABI(getToolChain(), Args)) { case arm::FloatABI::Invalid: llvm_unreachable("must have an ABI!"); case arm::FloatABI::Soft: CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=soft")); break; case arm::FloatABI::SoftFP: CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=softfp")); break; case arm::FloatABI::Hard: CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=hard")); break; } Args.AddLastArg(CmdArgs, options::OPT_march_EQ); normalizeCPUNamesForAssembler(Args, CmdArgs); Args.AddLastArg(CmdArgs, options::OPT_mfpu_EQ); // The integrated assembler doesn't implement e_flags setting behavior for // -meabi=gnu (gcc -mabi={apcs-gnu,atpcs} passes -meabi=gnu to gas). For // compatibility we accept but warn. if (Arg *A = Args.getLastArgNoClaim(options::OPT_mabi_EQ)) A->ignoreTargetSpecific(); break; } case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: { CmdArgs.push_back( getToolChain().getArch() == llvm::Triple::aarch64_be ? "-EB" : "-EL"); Args.AddLastArg(CmdArgs, options::OPT_march_EQ); normalizeCPUNamesForAssembler(Args, CmdArgs); break; } // TODO: handle loongarch32. case llvm::Triple::loongarch64: { StringRef ABIName = loongarch::getLoongArchABI(D, Args, getToolChain().getTriple()); CmdArgs.push_back(Args.MakeArgString("-mabi=" + ABIName)); break; } case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: { StringRef CPUName; StringRef ABIName; mips::getMipsCPUAndABI(Args, getToolChain().getTriple(), CPUName, ABIName); ABIName = mips::getGnuCompatibleMipsABIName(ABIName); CmdArgs.push_back("-march"); CmdArgs.push_back(CPUName.data()); CmdArgs.push_back("-mabi"); CmdArgs.push_back(ABIName.data()); // -mno-shared should be emitted unless -fpic, -fpie, -fPIC, -fPIE, // or -mshared (not implemented) is in effect. if (RelocationModel == llvm::Reloc::Static) CmdArgs.push_back("-mno-shared"); // LLVM doesn't support -mplt yet and acts as if it is always given. // However, -mplt has no effect with the N64 ABI. if (ABIName != "64" && !Args.hasArg(options::OPT_mno_abicalls)) CmdArgs.push_back("-call_nonpic"); if (getToolChain().getTriple().isLittleEndian()) CmdArgs.push_back("-EL"); else CmdArgs.push_back("-EB"); if (Arg *A = Args.getLastArg(options::OPT_mnan_EQ)) { if (StringRef(A->getValue()) == "2008") CmdArgs.push_back(Args.MakeArgString("-mnan=2008")); } // Add the last -mfp32/-mfpxx/-mfp64 or -mfpxx if it is enabled by default. if (Arg *A = Args.getLastArg(options::OPT_mfp32, options::OPT_mfpxx, options::OPT_mfp64)) { A->claim(); A->render(Args, CmdArgs); } else if (mips::shouldUseFPXX( Args, getToolChain().getTriple(), CPUName, ABIName, mips::getMipsFloatABI(getToolChain().getDriver(), Args, getToolChain().getTriple()))) CmdArgs.push_back("-mfpxx"); // Pass on -mmips16 or -mno-mips16. However, the assembler equivalent of // -mno-mips16 is actually -no-mips16. if (Arg *A = Args.getLastArg(options::OPT_mips16, options::OPT_mno_mips16)) { if (A->getOption().matches(options::OPT_mips16)) { A->claim(); A->render(Args, CmdArgs); } else { A->claim(); CmdArgs.push_back("-no-mips16"); } } Args.AddLastArg(CmdArgs, options::OPT_mmicromips, options::OPT_mno_micromips); Args.AddLastArg(CmdArgs, options::OPT_mdsp, options::OPT_mno_dsp); Args.AddLastArg(CmdArgs, options::OPT_mdspr2, options::OPT_mno_dspr2); if (Arg *A = Args.getLastArg(options::OPT_mmsa, options::OPT_mno_msa)) { // Do not use AddLastArg because not all versions of MIPS assembler // support -mmsa / -mno-msa options. if (A->getOption().matches(options::OPT_mmsa)) CmdArgs.push_back(Args.MakeArgString("-mmsa")); } Args.AddLastArg(CmdArgs, options::OPT_mhard_float, options::OPT_msoft_float); Args.AddLastArg(CmdArgs, options::OPT_mdouble_float, options::OPT_msingle_float); Args.AddLastArg(CmdArgs, options::OPT_modd_spreg, options::OPT_mno_odd_spreg); AddAssemblerKPIC(getToolChain(), Args, CmdArgs); break; } case llvm::Triple::systemz: { // Always pass an -march option, since our default of z10 is later // than the GNU assembler's default. std::string CPUName = systemz::getSystemZTargetCPU(Args); CmdArgs.push_back(Args.MakeArgString("-march=" + CPUName)); break; } case llvm::Triple::ve: DefaultAssembler = "nas"; } for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ, options::OPT_fdebug_prefix_map_EQ)) { StringRef Map = A->getValue(); if (!Map.contains('=')) D.Diag(diag::err_drv_invalid_argument_to_option) << Map << A->getOption().getName(); else { CmdArgs.push_back(Args.MakeArgString("--debug-prefix-map")); CmdArgs.push_back(Args.MakeArgString(Map)); } A->claim(); } Args.AddAllArgs(CmdArgs, options::OPT_I); Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler); CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); for (const auto &II : Inputs) CmdArgs.push_back(II.getFilename()); if (Arg *A = Args.getLastArg(options::OPT_g_Flag, options::OPT_gN_Group, options::OPT_gdwarf_2, options::OPT_gdwarf_3, options::OPT_gdwarf_4, options::OPT_gdwarf_5, options::OPT_gdwarf)) if (!A->getOption().matches(options::OPT_g0)) { Args.AddLastArg(CmdArgs, options::OPT_g_Flag); unsigned DwarfVersion = getDwarfVersion(getToolChain(), Args); CmdArgs.push_back(Args.MakeArgString("-gdwarf-" + Twine(DwarfVersion))); } const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath(DefaultAssembler)); C.addCommand(std::make_unique(JA, *this, ResponseFileSupport::AtFileCurCP(), Exec, CmdArgs, Inputs, Output)); // Handle the debug info splitting at object creation time if we're // creating an object. // TODO: Currently only works on linux with newer objcopy. if (Args.hasArg(options::OPT_gsplit_dwarf) && getToolChain().getTriple().isOSLinux()) SplitDebugInfo(getToolChain(), C, *this, JA, Args, Output, SplitDebugName(JA, Args, Inputs[0], Output)); } namespace { // Filter to remove Multilibs that don't exist as a suffix to Path class FilterNonExistent { StringRef Base, File; llvm::vfs::FileSystem &VFS; public: FilterNonExistent(StringRef Base, StringRef File, llvm::vfs::FileSystem &VFS) : Base(Base), File(File), VFS(VFS) {} bool operator()(const Multilib &M) { return !VFS.exists(Base + M.gccSuffix() + File); } }; } // end anonymous namespace static bool isSoftFloatABI(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float, options::OPT_mfloat_abi_EQ); if (!A) return false; return A->getOption().matches(options::OPT_msoft_float) || (A->getOption().matches(options::OPT_mfloat_abi_EQ) && A->getValue() == StringRef("soft")); } static bool isArmOrThumbArch(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb; } static bool isMipsEL(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::mipsel || Arch == llvm::Triple::mips64el; } static bool isMips16(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_mips16, options::OPT_mno_mips16); return A && A->getOption().matches(options::OPT_mips16); } static bool isMicroMips(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_mmicromips, options::OPT_mno_micromips); return A && A->getOption().matches(options::OPT_mmicromips); } static bool isMSP430(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::msp430; } static bool findMipsCsMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // Check for Code Sourcery toolchain multilibs MultilibSet CSMipsMultilibs; { auto MArchMips16 = MultilibBuilder("/mips16").flag("-m32").flag("-mips16"); auto MArchMicroMips = MultilibBuilder("/micromips").flag("-m32").flag("-mmicromips"); auto MArchDefault = MultilibBuilder("") .flag("-mips16", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true); auto UCLibc = MultilibBuilder("/uclibc").flag("-muclibc"); auto SoftFloat = MultilibBuilder("/soft-float").flag("-msoft-float"); auto Nan2008 = MultilibBuilder("/nan2008").flag("-mnan=2008"); auto DefaultFloat = MultilibBuilder("") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008", /*Disallow=*/true); auto BigEndian = MultilibBuilder("").flag("-EB").flag("-EL", /*Disallow=*/true); auto LittleEndian = MultilibBuilder("/el").flag("-EL").flag("-EB", /*Disallow=*/true); // Note that this one's osSuffix is "" auto MAbi64 = MultilibBuilder("") .gccSuffix("/64") .includeSuffix("/64") .flag("-mabi=n64") .flag("-mabi=n32", /*Disallow=*/true) .flag("-m32", /*Disallow=*/true); CSMipsMultilibs = MultilibSetBuilder() .Either(MArchMips16, MArchMicroMips, MArchDefault) .Maybe(UCLibc) .Either(SoftFloat, Nan2008, DefaultFloat) .FilterOut("/micromips/nan2008") .FilterOut("/mips16/nan2008") .Either(BigEndian, LittleEndian) .Maybe(MAbi64) .FilterOut("/mips16.*/64") .FilterOut("/micromips.*/64") .makeMultilibSet() .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { std::vector Dirs({"/include"}); if (StringRef(M.includeSuffix()).starts_with("/uclibc")) Dirs.push_back( "/../../../../mips-linux-gnu/libc/uclibc/usr/include"); else Dirs.push_back("/../../../../mips-linux-gnu/libc/usr/include"); return Dirs; }); } MultilibSet DebianMipsMultilibs; { MultilibBuilder MAbiN32 = MultilibBuilder().gccSuffix("/n32").includeSuffix("/n32").flag( "-mabi=n32"); MultilibBuilder M64 = MultilibBuilder() .gccSuffix("/64") .includeSuffix("/64") .flag("-m64") .flag("-m32", /*Disallow=*/true) .flag("-mabi=n32", /*Disallow=*/true); MultilibBuilder M32 = MultilibBuilder() .gccSuffix("/32") .flag("-m64", /*Disallow=*/true) .flag("-m32") .flag("-mabi=n32", /*Disallow=*/true); DebianMipsMultilibs = MultilibSetBuilder() .Either(M32, M64, MAbiN32) .makeMultilibSet() .FilterOut(NonExistent); } // Sort candidates. Toolchain that best meets the directories tree goes first. // Then select the first toolchains matches command line flags. MultilibSet *Candidates[] = {&CSMipsMultilibs, &DebianMipsMultilibs}; if (CSMipsMultilibs.size() < DebianMipsMultilibs.size()) std::iter_swap(Candidates, Candidates + 1); for (const MultilibSet *Candidate : Candidates) { if (Candidate->select(Flags, Result.SelectedMultilibs)) { if (Candidate == &DebianMipsMultilibs) Result.BiarchSibling = Multilib(); Result.Multilibs = *Candidate; return true; } } return false; } static bool findMipsAndroidMultilibs(llvm::vfs::FileSystem &VFS, StringRef Path, const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { MultilibSet AndroidMipsMultilibs = MultilibSetBuilder() .Maybe(MultilibBuilder("/mips-r2", {}, {}).flag("-march=mips32r2")) .Maybe(MultilibBuilder("/mips-r6", {}, {}).flag("-march=mips32r6")) .makeMultilibSet() .FilterOut(NonExistent); MultilibSet AndroidMipselMultilibs = MultilibSetBuilder() .Either(MultilibBuilder().flag("-march=mips32"), MultilibBuilder("/mips-r2", "", "/mips-r2") .flag("-march=mips32r2"), MultilibBuilder("/mips-r6", "", "/mips-r6") .flag("-march=mips32r6")) .makeMultilibSet() .FilterOut(NonExistent); MultilibSet AndroidMips64elMultilibs = MultilibSetBuilder() .Either(MultilibBuilder().flag("-march=mips64r6"), MultilibBuilder("/32/mips-r1", "", "/mips-r1") .flag("-march=mips32"), MultilibBuilder("/32/mips-r2", "", "/mips-r2") .flag("-march=mips32r2"), MultilibBuilder("/32/mips-r6", "", "/mips-r6") .flag("-march=mips32r6")) .makeMultilibSet() .FilterOut(NonExistent); MultilibSet *MS = &AndroidMipsMultilibs; if (VFS.exists(Path + "/mips-r6")) MS = &AndroidMipselMultilibs; else if (VFS.exists(Path + "/32")) MS = &AndroidMips64elMultilibs; if (MS->select(Flags, Result.SelectedMultilibs)) { Result.Multilibs = *MS; return true; } return false; } static bool findMipsMuslMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // Musl toolchain multilibs MultilibSet MuslMipsMultilibs; { auto MArchMipsR2 = MultilibBuilder("") .osSuffix("/mips-r2-hard-musl") .flag("-EB") .flag("-EL", /*Disallow=*/true) .flag("-march=mips32r2"); auto MArchMipselR2 = MultilibBuilder("/mipsel-r2-hard-musl") .flag("-EB", /*Disallow=*/true) .flag("-EL") .flag("-march=mips32r2"); MuslMipsMultilibs = MultilibSetBuilder() .Either(MArchMipsR2, MArchMipselR2) .makeMultilibSet(); // Specify the callback that computes the include directories. MuslMipsMultilibs.setIncludeDirsCallback([](const Multilib &M) { return std::vector( {"/../sysroot" + M.osSuffix() + "/usr/include"}); }); } if (MuslMipsMultilibs.select(Flags, Result.SelectedMultilibs)) { Result.Multilibs = MuslMipsMultilibs; return true; } return false; } static bool findMipsMtiMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // CodeScape MTI toolchain v1.2 and early. MultilibSet MtiMipsMultilibsV1; { auto MArchMips32 = MultilibBuilder("/mips32") .flag("-m32") .flag("-m64", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true) .flag("-march=mips32"); auto MArchMicroMips = MultilibBuilder("/micromips") .flag("-m32") .flag("-m64", /*Disallow=*/true) .flag("-mmicromips"); auto MArchMips64r2 = MultilibBuilder("/mips64r2") .flag("-m32", /*Disallow=*/true) .flag("-m64") .flag("-march=mips64r2"); auto MArchMips64 = MultilibBuilder("/mips64") .flag("-m32", /*Disallow=*/true) .flag("-m64") .flag("-march=mips64r2", /*Disallow=*/true); auto MArchDefault = MultilibBuilder("") .flag("-m32") .flag("-m64", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true) .flag("-march=mips32r2"); auto Mips16 = MultilibBuilder("/mips16").flag("-mips16"); auto UCLibc = MultilibBuilder("/uclibc").flag("-muclibc"); auto MAbi64 = MultilibBuilder("/64") .flag("-mabi=n64") .flag("-mabi=n32", /*Disallow=*/true) .flag("-m32", /*Disallow=*/true); auto BigEndian = MultilibBuilder("").flag("-EB").flag("-EL", /*Disallow=*/true); auto LittleEndian = MultilibBuilder("/el").flag("-EL").flag("-EB", /*Disallow=*/true); auto SoftFloat = MultilibBuilder("/sof").flag("-msoft-float"); auto Nan2008 = MultilibBuilder("/nan2008").flag("-mnan=2008"); MtiMipsMultilibsV1 = MultilibSetBuilder() .Either(MArchMips32, MArchMicroMips, MArchMips64r2, MArchMips64, MArchDefault) .Maybe(UCLibc) .Maybe(Mips16) .FilterOut("/mips64/mips16") .FilterOut("/mips64r2/mips16") .FilterOut("/micromips/mips16") .Maybe(MAbi64) .FilterOut("/micromips/64") .FilterOut("/mips32/64") .FilterOut("^/64") .FilterOut("/mips16/64") .Either(BigEndian, LittleEndian) .Maybe(SoftFloat) .Maybe(Nan2008) .FilterOut(".*sof/nan2008") .makeMultilibSet() .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { std::vector Dirs({"/include"}); if (StringRef(M.includeSuffix()).starts_with("/uclibc")) Dirs.push_back("/../../../../sysroot/uclibc/usr/include"); else Dirs.push_back("/../../../../sysroot/usr/include"); return Dirs; }); } // CodeScape IMG toolchain starting from v1.3. MultilibSet MtiMipsMultilibsV2; { auto BeHard = MultilibBuilder("/mips-r2-hard") .flag("-EB") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008", /*Disallow=*/true) .flag("-muclibc", /*Disallow=*/true); auto BeSoft = MultilibBuilder("/mips-r2-soft") .flag("-EB") .flag("-msoft-float") .flag("-mnan=2008", /*Disallow=*/true); auto ElHard = MultilibBuilder("/mipsel-r2-hard") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008", /*Disallow=*/true) .flag("-muclibc", /*Disallow=*/true); auto ElSoft = MultilibBuilder("/mipsel-r2-soft") .flag("-EL") .flag("-msoft-float") .flag("-mnan=2008", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true); auto BeHardNan = MultilibBuilder("/mips-r2-hard-nan2008") .flag("-EB") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008") .flag("-muclibc", /*Disallow=*/true); auto ElHardNan = MultilibBuilder("/mipsel-r2-hard-nan2008") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008") .flag("-muclibc", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true); auto BeHardNanUclibc = MultilibBuilder("/mips-r2-hard-nan2008-uclibc") .flag("-EB") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008") .flag("-muclibc"); auto ElHardNanUclibc = MultilibBuilder("/mipsel-r2-hard-nan2008-uclibc") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008") .flag("-muclibc"); auto BeHardUclibc = MultilibBuilder("/mips-r2-hard-uclibc") .flag("-EB") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008", /*Disallow=*/true) .flag("-muclibc"); auto ElHardUclibc = MultilibBuilder("/mipsel-r2-hard-uclibc") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008", /*Disallow=*/true) .flag("-muclibc"); auto ElMicroHardNan = MultilibBuilder("/micromipsel-r2-hard-nan2008") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mnan=2008") .flag("-mmicromips"); auto ElMicroSoft = MultilibBuilder("/micromipsel-r2-soft") .flag("-EL") .flag("-msoft-float") .flag("-mnan=2008", /*Disallow=*/true) .flag("-mmicromips"); auto O32 = MultilibBuilder("/lib") .osSuffix("") .flag("-mabi=n32", /*Disallow=*/true) .flag("-mabi=n64", /*Disallow=*/true); auto N32 = MultilibBuilder("/lib32") .osSuffix("") .flag("-mabi=n32") .flag("-mabi=n64", /*Disallow=*/true); auto N64 = MultilibBuilder("/lib64") .osSuffix("") .flag("-mabi=n32", /*Disallow=*/true) .flag("-mabi=n64"); MtiMipsMultilibsV2 = MultilibSetBuilder() .Either({BeHard, BeSoft, ElHard, ElSoft, BeHardNan, ElHardNan, BeHardNanUclibc, ElHardNanUclibc, BeHardUclibc, ElHardUclibc, ElMicroHardNan, ElMicroSoft}) .Either(O32, N32, N64) .makeMultilibSet() .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector({"/../../../../sysroot" + M.includeSuffix() + "/../usr/include"}); }) .setFilePathsCallback([](const Multilib &M) { return std::vector( {"/../../../../mips-mti-linux-gnu/lib" + M.gccSuffix()}); }); } for (auto *Candidate : {&MtiMipsMultilibsV1, &MtiMipsMultilibsV2}) { if (Candidate->select(Flags, Result.SelectedMultilibs)) { Result.Multilibs = *Candidate; return true; } } return false; } static bool findMipsImgMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // CodeScape IMG toolchain v1.2 and early. MultilibSet ImgMultilibsV1; { auto Mips64r6 = MultilibBuilder("/mips64r6") .flag("-m64") .flag("-m32", /*Disallow=*/true); auto LittleEndian = MultilibBuilder("/el").flag("-EL").flag("-EB", /*Disallow=*/true); auto MAbi64 = MultilibBuilder("/64") .flag("-mabi=n64") .flag("-mabi=n32", /*Disallow=*/true) .flag("-m32", /*Disallow=*/true); ImgMultilibsV1 = MultilibSetBuilder() .Maybe(Mips64r6) .Maybe(MAbi64) .Maybe(LittleEndian) .makeMultilibSet() .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector( {"/include", "/../../../../sysroot/usr/include"}); }); } // CodeScape IMG toolchain starting from v1.3. MultilibSet ImgMultilibsV2; { auto BeHard = MultilibBuilder("/mips-r6-hard") .flag("-EB") .flag("-msoft-float", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true); auto BeSoft = MultilibBuilder("/mips-r6-soft") .flag("-EB") .flag("-msoft-float") .flag("-mmicromips", /*Disallow=*/true); auto ElHard = MultilibBuilder("/mipsel-r6-hard") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mmicromips", /*Disallow=*/true); auto ElSoft = MultilibBuilder("/mipsel-r6-soft") .flag("-EL") .flag("-msoft-float") .flag("-mmicromips", /*Disallow=*/true); auto BeMicroHard = MultilibBuilder("/micromips-r6-hard") .flag("-EB") .flag("-msoft-float", /*Disallow=*/true) .flag("-mmicromips"); auto BeMicroSoft = MultilibBuilder("/micromips-r6-soft") .flag("-EB") .flag("-msoft-float") .flag("-mmicromips"); auto ElMicroHard = MultilibBuilder("/micromipsel-r6-hard") .flag("-EL") .flag("-msoft-float", /*Disallow=*/true) .flag("-mmicromips"); auto ElMicroSoft = MultilibBuilder("/micromipsel-r6-soft") .flag("-EL") .flag("-msoft-float") .flag("-mmicromips"); auto O32 = MultilibBuilder("/lib") .osSuffix("") .flag("-mabi=n32", /*Disallow=*/true) .flag("-mabi=n64", /*Disallow=*/true); auto N32 = MultilibBuilder("/lib32") .osSuffix("") .flag("-mabi=n32") .flag("-mabi=n64", /*Disallow=*/true); auto N64 = MultilibBuilder("/lib64") .osSuffix("") .flag("-mabi=n32", /*Disallow=*/true) .flag("-mabi=n64"); ImgMultilibsV2 = MultilibSetBuilder() .Either({BeHard, BeSoft, ElHard, ElSoft, BeMicroHard, BeMicroSoft, ElMicroHard, ElMicroSoft}) .Either(O32, N32, N64) .makeMultilibSet() .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector({"/../../../../sysroot" + M.includeSuffix() + "/../usr/include"}); }) .setFilePathsCallback([](const Multilib &M) { return std::vector( {"/../../../../mips-img-linux-gnu/lib" + M.gccSuffix()}); }); } for (auto *Candidate : {&ImgMultilibsV1, &ImgMultilibsV2}) { if (Candidate->select(Flags, Result.SelectedMultilibs)) { Result.Multilibs = *Candidate; return true; } } return false; } bool clang::driver::findMIPSMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); StringRef CPUName; StringRef ABIName; tools::mips::getMipsCPUAndABI(Args, TargetTriple, CPUName, ABIName); llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); Multilib::flags_list Flags; addMultilibFlag(TargetTriple.isMIPS32(), "-m32", Flags); addMultilibFlag(TargetTriple.isMIPS64(), "-m64", Flags); addMultilibFlag(isMips16(Args), "-mips16", Flags); addMultilibFlag(CPUName == "mips32", "-march=mips32", Flags); addMultilibFlag(CPUName == "mips32r2" || CPUName == "mips32r3" || CPUName == "mips32r5" || CPUName == "p5600", "-march=mips32r2", Flags); addMultilibFlag(CPUName == "mips32r6", "-march=mips32r6", Flags); addMultilibFlag(CPUName == "mips64", "-march=mips64", Flags); addMultilibFlag(CPUName == "mips64r2" || CPUName == "mips64r3" || CPUName == "mips64r5" || CPUName == "octeon" || CPUName == "octeon+", "-march=mips64r2", Flags); addMultilibFlag(CPUName == "mips64r6", "-march=mips64r6", Flags); addMultilibFlag(isMicroMips(Args), "-mmicromips", Flags); addMultilibFlag(tools::mips::isUCLibc(Args), "-muclibc", Flags); addMultilibFlag(tools::mips::isNaN2008(D, Args, TargetTriple), "-mnan=2008", Flags); addMultilibFlag(ABIName == "n32", "-mabi=n32", Flags); addMultilibFlag(ABIName == "n64", "-mabi=n64", Flags); addMultilibFlag(isSoftFloatABI(Args), "-msoft-float", Flags); addMultilibFlag(!isSoftFloatABI(Args), "-mhard-float", Flags); addMultilibFlag(isMipsEL(TargetArch), "-EL", Flags); addMultilibFlag(!isMipsEL(TargetArch), "-EB", Flags); if (TargetTriple.isAndroid()) return findMipsAndroidMultilibs(D.getVFS(), Path, Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::MipsTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.getEnvironment() == llvm::Triple::UnknownEnvironment) return findMipsMuslMultilibs(Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::MipsTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.isGNUEnvironment()) return findMipsMtiMultilibs(Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::ImaginationTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.isGNUEnvironment()) return findMipsImgMultilibs(Flags, NonExistent, Result); if (findMipsCsMultilibs(Flags, NonExistent, Result)) return true; // Fallback to the regular toolchain-tree structure. Multilib Default; Result.Multilibs.push_back(Default); Result.Multilibs.FilterOut(NonExistent); if (Result.Multilibs.select(Flags, Result.SelectedMultilibs)) { Result.BiarchSibling = Multilib(); return true; } return false; } static void findAndroidArmMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { // Find multilibs with subdirectories like armv7-a, thumb, armv7-a/thumb. FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); MultilibBuilder ArmV7Multilib = MultilibBuilder("/armv7-a") .flag("-march=armv7-a") .flag("-mthumb", /*Disallow=*/true); MultilibBuilder ThumbMultilib = MultilibBuilder("/thumb") .flag("-march=armv7-a", /*Disallow=*/true) .flag("-mthumb"); MultilibBuilder ArmV7ThumbMultilib = MultilibBuilder("/armv7-a/thumb").flag("-march=armv7-a").flag("-mthumb"); MultilibBuilder DefaultMultilib = MultilibBuilder("") .flag("-march=armv7-a", /*Disallow=*/true) .flag("-mthumb", /*Disallow=*/true); MultilibSet AndroidArmMultilibs = MultilibSetBuilder() .Either(ThumbMultilib, ArmV7Multilib, ArmV7ThumbMultilib, DefaultMultilib) .makeMultilibSet() .FilterOut(NonExistent); Multilib::flags_list Flags; llvm::StringRef Arch = Args.getLastArgValue(options::OPT_march_EQ); bool IsArmArch = TargetTriple.getArch() == llvm::Triple::arm; bool IsThumbArch = TargetTriple.getArch() == llvm::Triple::thumb; bool IsV7SubArch = TargetTriple.getSubArch() == llvm::Triple::ARMSubArch_v7; bool IsThumbMode = IsThumbArch || Args.hasFlag(options::OPT_mthumb, options::OPT_mno_thumb, false) || (IsArmArch && llvm::ARM::parseArchISA(Arch) == llvm::ARM::ISAKind::THUMB); bool IsArmV7Mode = (IsArmArch || IsThumbArch) && (llvm::ARM::parseArchVersion(Arch) == 7 || (IsArmArch && Arch == "" && IsV7SubArch)); addMultilibFlag(IsArmV7Mode, "-march=armv7-a", Flags); addMultilibFlag(IsThumbMode, "-mthumb", Flags); if (AndroidArmMultilibs.select(Flags, Result.SelectedMultilibs)) Result.Multilibs = AndroidArmMultilibs; } static bool findMSP430Multilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); MultilibBuilder WithoutExceptions = MultilibBuilder("/430").flag("-exceptions", /*Disallow=*/true); MultilibBuilder WithExceptions = MultilibBuilder("/430/exceptions").flag("-exceptions"); // FIXME: when clang starts to support msp430x ISA additional logic // to select between multilib must be implemented // MultilibBuilder MSP430xMultilib = MultilibBuilder("/large"); Result.Multilibs.push_back(WithoutExceptions.makeMultilib()); Result.Multilibs.push_back(WithExceptions.makeMultilib()); Result.Multilibs.FilterOut(NonExistent); Multilib::flags_list Flags; addMultilibFlag(Args.hasFlag(options::OPT_fexceptions, options::OPT_fno_exceptions, false), "-exceptions", Flags); if (Result.Multilibs.select(Flags, Result.SelectedMultilibs)) return true; return false; } static void findCSKYMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); tools::csky::FloatABI TheFloatABI = tools::csky::getCSKYFloatABI(D, Args); std::optional Res = tools::csky::getCSKYArchName(D, Args, TargetTriple); if (!Res) return; auto ARCHName = *Res; Multilib::flags_list Flags; addMultilibFlag(TheFloatABI == tools::csky::FloatABI::Hard, "-hard-fp", Flags); addMultilibFlag(TheFloatABI == tools::csky::FloatABI::SoftFP, "-soft-fp", Flags); addMultilibFlag(TheFloatABI == tools::csky::FloatABI::Soft, "-soft", Flags); addMultilibFlag(ARCHName == "ck801", "-march=ck801", Flags); addMultilibFlag(ARCHName == "ck802", "-march=ck802", Flags); addMultilibFlag(ARCHName == "ck803", "-march=ck803", Flags); addMultilibFlag(ARCHName == "ck804", "-march=ck804", Flags); addMultilibFlag(ARCHName == "ck805", "-march=ck805", Flags); addMultilibFlag(ARCHName == "ck807", "-march=ck807", Flags); addMultilibFlag(ARCHName == "ck810", "-march=ck810", Flags); addMultilibFlag(ARCHName == "ck810v", "-march=ck810v", Flags); addMultilibFlag(ARCHName == "ck860", "-march=ck860", Flags); addMultilibFlag(ARCHName == "ck860v", "-march=ck860v", Flags); bool isBigEndian = false; if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, options::OPT_mbig_endian)) isBigEndian = !A->getOption().matches(options::OPT_mlittle_endian); addMultilibFlag(isBigEndian, "-EB", Flags); auto HardFloat = MultilibBuilder("/hard-fp").flag("-hard-fp"); auto SoftFpFloat = MultilibBuilder("/soft-fp").flag("-soft-fp"); auto SoftFloat = MultilibBuilder("").flag("-soft"); auto Arch801 = MultilibBuilder("/ck801").flag("-march=ck801"); auto Arch802 = MultilibBuilder("/ck802").flag("-march=ck802"); auto Arch803 = MultilibBuilder("/ck803").flag("-march=ck803"); // CK804 use the same library as CK803 auto Arch804 = MultilibBuilder("/ck803").flag("-march=ck804"); auto Arch805 = MultilibBuilder("/ck805").flag("-march=ck805"); auto Arch807 = MultilibBuilder("/ck807").flag("-march=ck807"); auto Arch810 = MultilibBuilder("").flag("-march=ck810"); auto Arch810v = MultilibBuilder("/ck810v").flag("-march=ck810v"); auto Arch860 = MultilibBuilder("/ck860").flag("-march=ck860"); auto Arch860v = MultilibBuilder("/ck860v").flag("-march=ck860v"); auto BigEndian = MultilibBuilder("/big").flag("-EB"); MultilibSet CSKYMultilibs = MultilibSetBuilder() .Maybe(BigEndian) .Either({Arch801, Arch802, Arch803, Arch804, Arch805, Arch807, Arch810, Arch810v, Arch860, Arch860v}) .Either(HardFloat, SoftFpFloat, SoftFloat) .makeMultilibSet() .FilterOut(NonExistent); if (CSKYMultilibs.select(Flags, Result.SelectedMultilibs)) Result.Multilibs = CSKYMultilibs; } /// Extend the multi-lib re-use selection mechanism for RISC-V. /// This function will try to re-use multi-lib if they are compatible. /// Definition of compatible: /// - ABI must be the same. /// - multi-lib is a subset of current arch, e.g. multi-lib=march=rv32im /// is a subset of march=rv32imc. /// - march that contains atomic extension can't reuse multi-lib that /// doesn't have atomic, vice versa. e.g. multi-lib=march=rv32im and /// march=rv32ima are not compatible, because software and hardware /// atomic operation can't work together correctly. static bool selectRISCVMultilib(const MultilibSet &RISCVMultilibSet, StringRef Arch, const Multilib::flags_list &Flags, llvm::SmallVectorImpl &SelectedMultilibs) { // Try to find the perfect matching multi-lib first. if (RISCVMultilibSet.select(Flags, SelectedMultilibs)) return true; Multilib::flags_list NewFlags; std::vector NewMultilibs; llvm::Expected> ParseResult = llvm::RISCVISAInfo::parseArchString( Arch, /*EnableExperimentalExtension=*/true, /*ExperimentalExtensionVersionCheck=*/false); // Ignore any error here, we assume it will be handled in another place. if (llvm::errorToBool(ParseResult.takeError())) return false; auto &ISAInfo = *ParseResult; addMultilibFlag(ISAInfo->getXLen() == 32, "-m32", NewFlags); addMultilibFlag(ISAInfo->getXLen() == 64, "-m64", NewFlags); // Collect all flags except march=* for (StringRef Flag : Flags) { if (Flag.starts_with("!march=") || Flag.starts_with("-march=")) continue; NewFlags.push_back(Flag.str()); } llvm::StringSet<> AllArchExts; // Reconstruct multi-lib list, and break march option into separated // extension. e.g. march=rv32im -> +i +m for (const auto &M : RISCVMultilibSet) { bool Skip = false; MultilibBuilder NewMultilib = MultilibBuilder(M.gccSuffix(), M.osSuffix(), M.includeSuffix()); for (StringRef Flag : M.flags()) { // Add back all flags except -march. if (!Flag.consume_front("-march=")) { NewMultilib.flag(Flag); continue; } // Break down -march into individual extension. llvm::Expected> MLConfigParseResult = llvm::RISCVISAInfo::parseArchString( Flag, /*EnableExperimentalExtension=*/true, /*ExperimentalExtensionVersionCheck=*/false); // Ignore any error here, we assume it will handled in another place. if (llvm::errorToBool(MLConfigParseResult.takeError())) { // We might get a parsing error if rv32e in the list, we could just skip // that and process the rest of multi-lib configs. Skip = true; continue; } auto &MLConfigISAInfo = *MLConfigParseResult; for (auto &MLConfigArchExt : MLConfigISAInfo->getExtensions()) { auto ExtName = MLConfigArchExt.first; NewMultilib.flag(Twine("-", ExtName).str()); if (AllArchExts.insert(ExtName).second) { addMultilibFlag(ISAInfo->hasExtension(ExtName), Twine("-", ExtName).str(), NewFlags); } } // Check the XLEN explicitly. if (MLConfigISAInfo->getXLen() == 32) { NewMultilib.flag("-m32"); NewMultilib.flag("-m64", /*Disallow*/ true); } else { NewMultilib.flag("-m32", /*Disallow*/ true); NewMultilib.flag("-m64"); } // Atomic extension must be explicitly checked, soft and hard atomic // operation never co-work correctly. if (!MLConfigISAInfo->hasExtension("a")) NewMultilib.flag("-a", /*Disallow*/ true); } if (Skip) continue; NewMultilibs.emplace_back(NewMultilib); } // Build an internal used only multi-lib list, used for checking any // compatible multi-lib. MultilibSet NewRISCVMultilibs = MultilibSetBuilder().Either(NewMultilibs).makeMultilibSet(); if (NewRISCVMultilibs.select(NewFlags, SelectedMultilibs)) for (const Multilib &NewSelectedM : SelectedMultilibs) for (const auto &M : RISCVMultilibSet) // Look up the corresponding multi-lib entry in original multi-lib set. if (M.gccSuffix() == NewSelectedM.gccSuffix()) return true; return false; } static void findRISCVBareMetalMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); struct RiscvMultilib { StringRef march; StringRef mabi; }; // currently only support the set of multilibs like riscv-gnu-toolchain does. // TODO: support MULTILIB_REUSE constexpr RiscvMultilib RISCVMultilibSet[] = { {"rv32i", "ilp32"}, {"rv32im", "ilp32"}, {"rv32iac", "ilp32"}, {"rv32imac", "ilp32"}, {"rv32imafc", "ilp32f"}, {"rv64imac", "lp64"}, {"rv64imafdc", "lp64d"}}; std::vector Ms; for (auto Element : RISCVMultilibSet) { // multilib path rule is ${march}/${mabi} Ms.emplace_back( MultilibBuilder( (Twine(Element.march) + "/" + Twine(Element.mabi)).str()) .flag(Twine("-march=", Element.march).str()) .flag(Twine("-mabi=", Element.mabi).str())); } MultilibSet RISCVMultilibs = MultilibSetBuilder() .Either(Ms) .makeMultilibSet() .FilterOut(NonExistent) .setFilePathsCallback([](const Multilib &M) { return std::vector( {M.gccSuffix(), "/../../../../riscv64-unknown-elf/lib" + M.gccSuffix(), "/../../../../riscv32-unknown-elf/lib" + M.gccSuffix()}); }); Multilib::flags_list Flags; llvm::StringSet<> Added_ABIs; StringRef ABIName = tools::riscv::getRISCVABI(Args, TargetTriple); std::string MArch = tools::riscv::getRISCVArch(Args, TargetTriple); for (auto Element : RISCVMultilibSet) { addMultilibFlag(MArch == Element.march, Twine("-march=", Element.march).str().c_str(), Flags); if (!Added_ABIs.count(Element.mabi)) { Added_ABIs.insert(Element.mabi); addMultilibFlag(ABIName == Element.mabi, Twine("-mabi=", Element.mabi).str().c_str(), Flags); } } if (selectRISCVMultilib(RISCVMultilibs, MArch, Flags, Result.SelectedMultilibs)) Result.Multilibs = RISCVMultilibs; } static void findRISCVMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { if (TargetTriple.getOS() == llvm::Triple::UnknownOS) return findRISCVBareMetalMultilibs(D, TargetTriple, Path, Args, Result); FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); MultilibBuilder Ilp32 = MultilibBuilder("lib32/ilp32").flag("-m32").flag("-mabi=ilp32"); MultilibBuilder Ilp32f = MultilibBuilder("lib32/ilp32f").flag("-m32").flag("-mabi=ilp32f"); MultilibBuilder Ilp32d = MultilibBuilder("lib32/ilp32d").flag("-m32").flag("-mabi=ilp32d"); MultilibBuilder Lp64 = MultilibBuilder("lib64/lp64").flag("-m64").flag("-mabi=lp64"); MultilibBuilder Lp64f = MultilibBuilder("lib64/lp64f").flag("-m64").flag("-mabi=lp64f"); MultilibBuilder Lp64d = MultilibBuilder("lib64/lp64d").flag("-m64").flag("-mabi=lp64d"); MultilibSet RISCVMultilibs = MultilibSetBuilder() .Either({Ilp32, Ilp32f, Ilp32d, Lp64, Lp64f, Lp64d}) .makeMultilibSet() .FilterOut(NonExistent); Multilib::flags_list Flags; bool IsRV64 = TargetTriple.getArch() == llvm::Triple::riscv64; StringRef ABIName = tools::riscv::getRISCVABI(Args, TargetTriple); addMultilibFlag(!IsRV64, "-m32", Flags); addMultilibFlag(IsRV64, "-m64", Flags); addMultilibFlag(ABIName == "ilp32", "-mabi=ilp32", Flags); addMultilibFlag(ABIName == "ilp32f", "-mabi=ilp32f", Flags); addMultilibFlag(ABIName == "ilp32d", "-mabi=ilp32d", Flags); addMultilibFlag(ABIName == "lp64", "-mabi=lp64", Flags); addMultilibFlag(ABIName == "lp64f", "-mabi=lp64f", Flags); addMultilibFlag(ABIName == "lp64d", "-mabi=lp64d", Flags); if (RISCVMultilibs.select(Flags, Result.SelectedMultilibs)) Result.Multilibs = RISCVMultilibs; } static bool findBiarchMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, bool NeedsBiarchSuffix, DetectedMultilibs &Result) { MultilibBuilder DefaultBuilder; // Some versions of SUSE and Fedora on ppc64 put 32-bit libs // in what would normally be GCCInstallPath and put the 64-bit // libs in a subdirectory named 64. The simple logic we follow is that // *if* there is a subdirectory of the right name with crtbegin.o in it, // we use that. If not, and if not a biarch triple alias, we look for // crtbegin.o without the subdirectory. StringRef Suff64 = "/64"; // Solaris uses platform-specific suffixes instead of /64. if (TargetTriple.isOSSolaris()) { switch (TargetTriple.getArch()) { case llvm::Triple::x86: case llvm::Triple::x86_64: Suff64 = "/amd64"; break; case llvm::Triple::sparc: case llvm::Triple::sparcv9: Suff64 = "/sparcv9"; break; default: break; } } Multilib Alt64 = MultilibBuilder() .gccSuffix(Suff64) .includeSuffix(Suff64) .flag("-m32", /*Disallow=*/true) .flag("-m64") .flag("-mx32", /*Disallow=*/true) .makeMultilib(); Multilib Alt32 = MultilibBuilder() .gccSuffix("/32") .includeSuffix("/32") .flag("-m32") .flag("-m64", /*Disallow=*/true) .flag("-mx32", /*Disallow=*/true) .makeMultilib(); Multilib Altx32 = MultilibBuilder() .gccSuffix("/x32") .includeSuffix("/x32") .flag("-m32", /*Disallow=*/true) .flag("-m64", /*Disallow=*/true) .flag("-mx32") .makeMultilib(); Multilib Alt32sparc = MultilibBuilder() .gccSuffix("/sparcv8plus") .includeSuffix("/sparcv8plus") .flag("-m32") .flag("-m64", /*Disallow=*/true) .makeMultilib(); // GCC toolchain for IAMCU doesn't have crtbegin.o, so look for libgcc.a. FilterNonExistent NonExistent( Path, TargetTriple.isOSIAMCU() ? "/libgcc.a" : "/crtbegin.o", D.getVFS()); // Determine default multilib from: 32, 64, x32 // Also handle cases such as 64 on 32, 32 on 64, etc. enum { UNKNOWN, WANT32, WANT64, WANTX32 } Want = UNKNOWN; const bool IsX32 = TargetTriple.isX32(); if (TargetTriple.isArch32Bit() && !NonExistent(Alt32)) Want = WANT64; if (TargetTriple.isArch32Bit() && !NonExistent(Alt32sparc)) Want = WANT64; else if (TargetTriple.isArch64Bit() && IsX32 && !NonExistent(Altx32)) Want = WANT64; else if (TargetTriple.isArch64Bit() && !IsX32 && !NonExistent(Alt64)) Want = WANT32; else if (TargetTriple.isArch64Bit() && !NonExistent(Alt32sparc)) Want = WANT64; else { if (TargetTriple.isArch32Bit()) Want = NeedsBiarchSuffix ? WANT64 : WANT32; else if (IsX32) Want = NeedsBiarchSuffix ? WANT64 : WANTX32; else Want = NeedsBiarchSuffix ? WANT32 : WANT64; } if (Want == WANT32) DefaultBuilder.flag("-m32") .flag("-m64", /*Disallow=*/true) .flag("-mx32", /*Disallow=*/true); else if (Want == WANT64) DefaultBuilder.flag("-m32", /*Disallow=*/true) .flag("-m64") .flag("-mx32", /*Disallow=*/true); else if (Want == WANTX32) DefaultBuilder.flag("-m32", /*Disallow=*/true) .flag("-m64", /*Disallow=*/true) .flag("-mx32"); else return false; Multilib Default = DefaultBuilder.makeMultilib(); Result.Multilibs.push_back(Default); Result.Multilibs.push_back(Alt64); Result.Multilibs.push_back(Alt32); Result.Multilibs.push_back(Altx32); Result.Multilibs.push_back(Alt32sparc); Result.Multilibs.FilterOut(NonExistent); Multilib::flags_list Flags; addMultilibFlag(TargetTriple.isArch64Bit() && !IsX32, "-m64", Flags); addMultilibFlag(TargetTriple.isArch32Bit(), "-m32", Flags); addMultilibFlag(TargetTriple.isArch64Bit() && IsX32, "-mx32", Flags); if (!Result.Multilibs.select(Flags, Result.SelectedMultilibs)) return false; if (Result.SelectedMultilibs.back() == Alt64 || Result.SelectedMultilibs.back() == Alt32 || Result.SelectedMultilibs.back() == Altx32 || Result.SelectedMultilibs.back() == Alt32sparc) Result.BiarchSibling = Default; return true; } /// Generic_GCC - A tool chain using the 'gcc' command to perform /// all subcommands; this relies on gcc translating the majority of /// command line options. /// Less-than for GCCVersion, implementing a Strict Weak Ordering. bool Generic_GCC::GCCVersion::isOlderThan(int RHSMajor, int RHSMinor, int RHSPatch, StringRef RHSPatchSuffix) const { if (Major != RHSMajor) return Major < RHSMajor; if (Minor != RHSMinor) { // Note that versions without a specified minor sort higher than those with // a minor. if (RHSMinor == -1) return true; if (Minor == -1) return false; return Minor < RHSMinor; } if (Patch != RHSPatch) { // Note that versions without a specified patch sort higher than those with // a patch. if (RHSPatch == -1) return true; if (Patch == -1) return false; // Otherwise just sort on the patch itself. return Patch < RHSPatch; } if (PatchSuffix != RHSPatchSuffix) { // Sort empty suffixes higher. if (RHSPatchSuffix.empty()) return true; if (PatchSuffix.empty()) return false; // Provide a lexicographic sort to make this a total ordering. return PatchSuffix < RHSPatchSuffix; } // The versions are equal. return false; } /// Parse a GCCVersion object out of a string of text. /// /// This is the primary means of forming GCCVersion objects. /*static*/ Generic_GCC::GCCVersion Generic_GCC::GCCVersion::Parse(StringRef VersionText) { const GCCVersion BadVersion = {VersionText.str(), -1, -1, -1, "", "", ""}; std::pair First = VersionText.split('.'); std::pair Second = First.second.split('.'); StringRef MajorStr = First.first; StringRef MinorStr = Second.first; StringRef PatchStr = Second.second; GCCVersion GoodVersion = {VersionText.str(), -1, -1, -1, "", "", ""}; // Parse version number strings such as: // 5 // 4.4 // 4.4-patched // 4.4.0 // 4.4.x // 4.4.2-rc4 // 4.4.x-patched // 10-win32 // Split on '.', handle 1, 2 or 3 such segments. Each segment must contain // purely a number, except for the last one, where a non-number suffix // is stored in PatchSuffix. The third segment is allowed to not contain // a number at all. auto TryParseLastNumber = [&](StringRef Segment, int &Number, std::string &OutStr) -> bool { // Look for a number prefix and parse that, and split out any trailing // string into GoodVersion.PatchSuffix. if (size_t EndNumber = Segment.find_first_not_of("0123456789")) { StringRef NumberStr = Segment.slice(0, EndNumber); if (NumberStr.getAsInteger(10, Number) || Number < 0) return false; OutStr = NumberStr; GoodVersion.PatchSuffix = Segment.substr(EndNumber); return true; } return false; }; auto TryParseNumber = [](StringRef Segment, int &Number) -> bool { if (Segment.getAsInteger(10, Number) || Number < 0) return false; return true; }; if (MinorStr.empty()) { // If no minor string, major is the last segment if (!TryParseLastNumber(MajorStr, GoodVersion.Major, GoodVersion.MajorStr)) return BadVersion; return GoodVersion; } if (!TryParseNumber(MajorStr, GoodVersion.Major)) return BadVersion; GoodVersion.MajorStr = MajorStr; if (PatchStr.empty()) { // If no patch string, minor is the last segment if (!TryParseLastNumber(MinorStr, GoodVersion.Minor, GoodVersion.MinorStr)) return BadVersion; return GoodVersion; } if (!TryParseNumber(MinorStr, GoodVersion.Minor)) return BadVersion; GoodVersion.MinorStr = MinorStr; // For the last segment, tolerate a missing number. std::string DummyStr; TryParseLastNumber(PatchStr, GoodVersion.Patch, DummyStr); return GoodVersion; } static llvm::StringRef getGCCToolchainDir(const ArgList &Args, llvm::StringRef SysRoot) { const Arg *A = Args.getLastArg(clang::driver::options::OPT_gcc_toolchain); if (A) return A->getValue(); // If we have a SysRoot, ignore GCC_INSTALL_PREFIX. // GCC_INSTALL_PREFIX specifies the gcc installation for the default // sysroot and is likely not valid with a different sysroot. if (!SysRoot.empty()) return ""; return GCC_INSTALL_PREFIX; } /// Initialize a GCCInstallationDetector from the driver. /// /// This performs all of the autodetection and sets up the various paths. /// Once constructed, a GCCInstallationDetector is essentially immutable. /// /// FIXME: We shouldn't need an explicit TargetTriple parameter here, and /// should instead pull the target out of the driver. This is currently /// necessary because the driver doesn't store the final version of the target /// triple. void Generic_GCC::GCCInstallationDetector::init( const llvm::Triple &TargetTriple, const ArgList &Args) { llvm::Triple BiarchVariantTriple = TargetTriple.isArch32Bit() ? TargetTriple.get64BitArchVariant() : TargetTriple.get32BitArchVariant(); // The library directories which may contain GCC installations. SmallVector CandidateLibDirs, CandidateBiarchLibDirs; // The compatible GCC triples for this particular architecture. SmallVector CandidateTripleAliases; SmallVector CandidateBiarchTripleAliases; // Add some triples that we want to check first. CandidateTripleAliases.push_back(TargetTriple.str()); std::string TripleNoVendor, BiarchTripleNoVendor; if (TargetTriple.getVendor() == llvm::Triple::UnknownVendor) { StringRef OSEnv = TargetTriple.getOSAndEnvironmentName(); if (TargetTriple.getEnvironment() == llvm::Triple::GNUX32) OSEnv = "linux-gnu"; TripleNoVendor = (TargetTriple.getArchName().str() + '-' + OSEnv).str(); CandidateTripleAliases.push_back(TripleNoVendor); if (BiarchVariantTriple.getArch() != llvm::Triple::UnknownArch) { BiarchTripleNoVendor = (BiarchVariantTriple.getArchName().str() + '-' + OSEnv).str(); CandidateBiarchTripleAliases.push_back(BiarchTripleNoVendor); } } CollectLibDirsAndTriples(TargetTriple, BiarchVariantTriple, CandidateLibDirs, CandidateTripleAliases, CandidateBiarchLibDirs, CandidateBiarchTripleAliases); // If --gcc-install-dir= is specified, skip filesystem detection. if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_gcc_install_dir_EQ); A && A->getValue()[0]) { StringRef InstallDir = A->getValue(); if (!ScanGCCForMultilibs(TargetTriple, Args, InstallDir, false)) { D.Diag(diag::err_drv_invalid_gcc_install_dir) << InstallDir; } else { (void)InstallDir.consume_back("/"); StringRef VersionText = llvm::sys::path::filename(InstallDir); StringRef TripleText = llvm::sys::path::filename(llvm::sys::path::parent_path(InstallDir)); Version = GCCVersion::Parse(VersionText); GCCTriple.setTriple(TripleText); GCCInstallPath = std::string(InstallDir); GCCParentLibPath = GCCInstallPath + "/../../.."; IsValid = true; } return; } // If --gcc-triple is specified use this instead of trying to // auto-detect a triple. if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_gcc_triple_EQ)) { StringRef GCCTriple = A->getValue(); CandidateTripleAliases.clear(); CandidateTripleAliases.push_back(GCCTriple); } // Compute the set of prefixes for our search. SmallVector Prefixes; StringRef GCCToolchainDir = getGCCToolchainDir(Args, D.SysRoot); if (GCCToolchainDir != "") { if (GCCToolchainDir.back() == '/') GCCToolchainDir = GCCToolchainDir.drop_back(); // remove the / Prefixes.push_back(std::string(GCCToolchainDir)); } else { // If we have a SysRoot, try that first. if (!D.SysRoot.empty()) { Prefixes.push_back(D.SysRoot); AddDefaultGCCPrefixes(TargetTriple, Prefixes, D.SysRoot); } // Then look for gcc installed alongside clang. Prefixes.push_back(D.Dir + "/.."); // Next, look for prefix(es) that correspond to distribution-supplied gcc // installations. if (D.SysRoot.empty()) { // Typically /usr. AddDefaultGCCPrefixes(TargetTriple, Prefixes, D.SysRoot); } // Try to respect gcc-config on Gentoo if --gcc-toolchain is not provided. // This avoids accidentally enforcing the system GCC version when using a // custom toolchain. SmallVector GentooTestTriples; // Try to match an exact triple as target triple first. // e.g. crossdev -S x86_64-gentoo-linux-gnu will install gcc libs for // x86_64-gentoo-linux-gnu. But "clang -target x86_64-gentoo-linux-gnu" // may pick the libraries for x86_64-pc-linux-gnu even when exact matching // triple x86_64-gentoo-linux-gnu is present. GentooTestTriples.push_back(TargetTriple.str()); GentooTestTriples.append(CandidateTripleAliases.begin(), CandidateTripleAliases.end()); if (ScanGentooConfigs(TargetTriple, Args, GentooTestTriples, CandidateBiarchTripleAliases)) return; } // Loop over the various components which exist and select the best GCC // installation available. GCC installs are ranked by version number. const GCCVersion VersionZero = GCCVersion::Parse("0.0.0"); Version = VersionZero; for (const std::string &Prefix : Prefixes) { auto &VFS = D.getVFS(); if (!VFS.exists(Prefix)) continue; for (StringRef Suffix : CandidateLibDirs) { const std::string LibDir = concat(Prefix, Suffix); if (!VFS.exists(LibDir)) continue; // Maybe filter out /gcc and /gcc-cross. bool GCCDirExists = VFS.exists(LibDir + "/gcc"); bool GCCCrossDirExists = VFS.exists(LibDir + "/gcc-cross"); for (StringRef Candidate : CandidateTripleAliases) ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate, false, GCCDirExists, GCCCrossDirExists); } for (StringRef Suffix : CandidateBiarchLibDirs) { const std::string LibDir = Prefix + Suffix.str(); if (!VFS.exists(LibDir)) continue; bool GCCDirExists = VFS.exists(LibDir + "/gcc"); bool GCCCrossDirExists = VFS.exists(LibDir + "/gcc-cross"); for (StringRef Candidate : CandidateBiarchTripleAliases) ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate, true, GCCDirExists, GCCCrossDirExists); } // Skip other prefixes once a GCC installation is found. if (Version > VersionZero) break; } } void Generic_GCC::GCCInstallationDetector::print(raw_ostream &OS) const { for (const auto &InstallPath : CandidateGCCInstallPaths) OS << "Found candidate GCC installation: " << InstallPath << "\n"; if (!GCCInstallPath.empty()) OS << "Selected GCC installation: " << GCCInstallPath << "\n"; for (const auto &Multilib : Multilibs) OS << "Candidate multilib: " << Multilib << "\n"; if (Multilibs.size() != 0 || !SelectedMultilib.isDefault()) OS << "Selected multilib: " << SelectedMultilib << "\n"; } bool Generic_GCC::GCCInstallationDetector::getBiarchSibling(Multilib &M) const { if (BiarchSibling) { M = *BiarchSibling; return true; } return false; } void Generic_GCC::GCCInstallationDetector::AddDefaultGCCPrefixes( const llvm::Triple &TargetTriple, SmallVectorImpl &Prefixes, StringRef SysRoot) { if (TargetTriple.isOSHaiku()) { Prefixes.push_back(concat(SysRoot, "/boot/system/develop/tools")); return; } if (TargetTriple.isOSSolaris()) { // Solaris is a special case. // The GCC installation is under // /usr/gcc/./lib/gcc//../ // so we need to find those /usr/gcc/*/lib/gcc libdirs and go with // /usr/gcc/ as a prefix. SmallVector, 8> SolarisPrefixes; std::string PrefixDir = concat(SysRoot, "/usr/gcc"); std::error_code EC; for (llvm::vfs::directory_iterator LI = D.getVFS().dir_begin(PrefixDir, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->path()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); // Filter out obviously bad entries. if (CandidateVersion.Major == -1 || CandidateVersion.isOlderThan(4, 1, 1)) continue; std::string CandidatePrefix = PrefixDir + "/" + VersionText.str(); std::string CandidateLibPath = CandidatePrefix + "/lib/gcc"; if (!D.getVFS().exists(CandidateLibPath)) continue; SolarisPrefixes.emplace_back( std::make_pair(CandidateVersion, CandidatePrefix)); } // Sort in reverse order so GCCInstallationDetector::init picks the latest. std::sort(SolarisPrefixes.rbegin(), SolarisPrefixes.rend()); for (auto p : SolarisPrefixes) Prefixes.emplace_back(p.second); return; } // For Linux, if --sysroot is not specified, look for RHEL/CentOS devtoolsets // and gcc-toolsets. if (SysRoot.empty() && TargetTriple.getOS() == llvm::Triple::Linux && D.getVFS().exists("/opt/rh")) { // TODO: We may want to remove this, since the functionality // can be achieved using config files. Prefixes.push_back("/opt/rh/gcc-toolset-12/root/usr"); Prefixes.push_back("/opt/rh/gcc-toolset-11/root/usr"); Prefixes.push_back("/opt/rh/gcc-toolset-10/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-12/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-11/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-10/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-9/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-8/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-7/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-6/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-4/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-3/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-2/root/usr"); } // Fall back to /usr which is used by most non-Solaris systems. Prefixes.push_back(concat(SysRoot, "/usr")); } /*static*/ void Generic_GCC::GCCInstallationDetector::CollectLibDirsAndTriples( const llvm::Triple &TargetTriple, const llvm::Triple &BiarchTriple, SmallVectorImpl &LibDirs, SmallVectorImpl &TripleAliases, SmallVectorImpl &BiarchLibDirs, SmallVectorImpl &BiarchTripleAliases) { // Declare a bunch of static data sets that we'll select between below. These // are specifically designed to always refer to string literals to avoid any // lifetime or initialization issues. // // The *Triples variables hard code some triples so that, for example, // --target=aarch64 (incomplete triple) can detect lib/aarch64-linux-gnu. // They are not needed when the user has correct LLVM_DEFAULT_TARGET_TRIPLE // and always uses the full --target (e.g. --target=aarch64-linux-gnu). The // lists should shrink over time. Please don't add more elements to *Triples. static const char *const AArch64LibDirs[] = {"/lib64", "/lib"}; static const char *const AArch64Triples[] = { "aarch64-none-linux-gnu", "aarch64-linux-gnu", "aarch64-redhat-linux", "aarch64-suse-linux"}; static const char *const AArch64beLibDirs[] = {"/lib"}; static const char *const AArch64beTriples[] = {"aarch64_be-none-linux-gnu"}; static const char *const ARMLibDirs[] = {"/lib"}; static const char *const ARMTriples[] = {"arm-linux-gnueabi"}; static const char *const ARMHFTriples[] = {"arm-linux-gnueabihf", "armv7hl-redhat-linux-gnueabi", "armv6hl-suse-linux-gnueabi", "armv7hl-suse-linux-gnueabi"}; static const char *const ARMebLibDirs[] = {"/lib"}; static const char *const ARMebTriples[] = {"armeb-linux-gnueabi"}; static const char *const ARMebHFTriples[] = { "armeb-linux-gnueabihf", "armebv7hl-redhat-linux-gnueabi"}; static const char *const AVRLibDirs[] = {"/lib"}; static const char *const AVRTriples[] = {"avr"}; static const char *const CSKYLibDirs[] = {"/lib"}; static const char *const CSKYTriples[] = { "csky-linux-gnuabiv2", "csky-linux-uclibcabiv2", "csky-elf-noneabiv2"}; static const char *const X86_64LibDirs[] = {"/lib64", "/lib"}; static const char *const X86_64Triples[] = { "x86_64-linux-gnu", "x86_64-unknown-linux-gnu", "x86_64-pc-linux-gnu", "x86_64-redhat-linux6E", "x86_64-redhat-linux", "x86_64-suse-linux", "x86_64-manbo-linux-gnu", "x86_64-slackware-linux", "x86_64-unknown-linux", "x86_64-amazon-linux"}; static const char *const X32Triples[] = {"x86_64-linux-gnux32", "x86_64-pc-linux-gnux32"}; static const char *const X32LibDirs[] = {"/libx32", "/lib"}; static const char *const X86LibDirs[] = {"/lib32", "/lib"}; static const char *const X86Triples[] = { "i586-linux-gnu", "i686-linux-gnu", "i686-pc-linux-gnu", "i386-redhat-linux6E", "i686-redhat-linux", "i386-redhat-linux", "i586-suse-linux", "i686-montavista-linux", }; static const char *const LoongArch64LibDirs[] = {"/lib64", "/lib"}; static const char *const LoongArch64Triples[] = { "loongarch64-linux-gnu", "loongarch64-unknown-linux-gnu"}; static const char *const M68kLibDirs[] = {"/lib"}; static const char *const M68kTriples[] = {"m68k-unknown-linux-gnu", "m68k-suse-linux"}; static const char *const MIPSLibDirs[] = {"/libo32", "/lib"}; static const char *const MIPSTriples[] = { "mips-linux-gnu", "mips-mti-linux", "mips-mti-linux-gnu", "mips-img-linux-gnu", "mipsisa32r6-linux-gnu"}; static const char *const MIPSELLibDirs[] = {"/libo32", "/lib"}; static const char *const MIPSELTriples[] = {"mipsel-linux-gnu", "mips-img-linux-gnu"}; static const char *const MIPS64LibDirs[] = {"/lib64", "/lib"}; static const char *const MIPS64Triples[] = { "mips-mti-linux-gnu", "mips-img-linux-gnu", "mips64-linux-gnuabi64", "mipsisa64r6-linux-gnu", "mipsisa64r6-linux-gnuabi64"}; static const char *const MIPS64ELLibDirs[] = {"/lib64", "/lib"}; static const char *const MIPS64ELTriples[] = { "mips-mti-linux-gnu", "mips-img-linux-gnu", "mips64el-linux-gnuabi64", "mipsisa64r6el-linux-gnu", "mipsisa64r6el-linux-gnuabi64"}; static const char *const MIPSN32LibDirs[] = {"/lib32"}; static const char *const MIPSN32Triples[] = {"mips64-linux-gnuabin32", "mipsisa64r6-linux-gnuabin32"}; static const char *const MIPSN32ELLibDirs[] = {"/lib32"}; static const char *const MIPSN32ELTriples[] = { "mips64el-linux-gnuabin32", "mipsisa64r6el-linux-gnuabin32"}; static const char *const MSP430LibDirs[] = {"/lib"}; static const char *const MSP430Triples[] = {"msp430-elf"}; static const char *const PPCLibDirs[] = {"/lib32", "/lib"}; static const char *const PPCTriples[] = { "powerpc-unknown-linux-gnu", // On 32-bit PowerPC systems running SUSE Linux, gcc is configured as a // 64-bit compiler which defaults to "-m32", hence "powerpc64-suse-linux". "powerpc64-suse-linux", "powerpc-montavista-linuxspe"}; static const char *const PPCLELibDirs[] = {"/lib32", "/lib"}; static const char *const PPCLETriples[] = {"powerpcle-unknown-linux-gnu", "powerpcle-linux-musl"}; static const char *const PPC64LibDirs[] = {"/lib64", "/lib"}; static const char *const PPC64Triples[] = {"powerpc64-unknown-linux-gnu", "powerpc64-suse-linux", "ppc64-redhat-linux"}; static const char *const PPC64LELibDirs[] = {"/lib64", "/lib"}; static const char *const PPC64LETriples[] = { "powerpc64le-unknown-linux-gnu", "powerpc64le-none-linux-gnu", "powerpc64le-suse-linux", "ppc64le-redhat-linux"}; static const char *const RISCV32LibDirs[] = {"/lib32", "/lib"}; static const char *const RISCV32Triples[] = {"riscv32-unknown-linux-gnu", "riscv32-unknown-elf"}; static const char *const RISCV64LibDirs[] = {"/lib64", "/lib"}; static const char *const RISCV64Triples[] = {"riscv64-unknown-linux-gnu", "riscv64-unknown-elf"}; static const char *const SPARCv8LibDirs[] = {"/lib32", "/lib"}; static const char *const SPARCv8Triples[] = {"sparc-linux-gnu", "sparcv8-linux-gnu"}; static const char *const SPARCv9LibDirs[] = {"/lib64", "/lib"}; static const char *const SPARCv9Triples[] = {"sparc64-linux-gnu", "sparcv9-linux-gnu"}; static const char *const SystemZLibDirs[] = {"/lib64", "/lib"}; static const char *const SystemZTriples[] = { "s390x-unknown-linux-gnu", "s390x-ibm-linux-gnu", "s390x-suse-linux", "s390x-redhat-linux"}; using std::begin; using std::end; if (TargetTriple.isOSSolaris()) { static const char *const SolarisLibDirs[] = {"/lib"}; static const char *const SolarisSparcV8Triples[] = { "sparc-sun-solaris2.11"}; static const char *const SolarisSparcV9Triples[] = { "sparcv9-sun-solaris2.11"}; static const char *const SolarisX86Triples[] = {"i386-pc-solaris2.11"}; static const char *const SolarisX86_64Triples[] = {"x86_64-pc-solaris2.11"}; LibDirs.append(begin(SolarisLibDirs), end(SolarisLibDirs)); BiarchLibDirs.append(begin(SolarisLibDirs), end(SolarisLibDirs)); switch (TargetTriple.getArch()) { case llvm::Triple::x86: TripleAliases.append(begin(SolarisX86Triples), end(SolarisX86Triples)); BiarchTripleAliases.append(begin(SolarisX86_64Triples), end(SolarisX86_64Triples)); break; case llvm::Triple::x86_64: TripleAliases.append(begin(SolarisX86_64Triples), end(SolarisX86_64Triples)); BiarchTripleAliases.append(begin(SolarisX86Triples), end(SolarisX86Triples)); break; case llvm::Triple::sparc: TripleAliases.append(begin(SolarisSparcV8Triples), end(SolarisSparcV8Triples)); BiarchTripleAliases.append(begin(SolarisSparcV9Triples), end(SolarisSparcV9Triples)); break; case llvm::Triple::sparcv9: TripleAliases.append(begin(SolarisSparcV9Triples), end(SolarisSparcV9Triples)); BiarchTripleAliases.append(begin(SolarisSparcV8Triples), end(SolarisSparcV8Triples)); break; default: break; } return; } // Android targets should not use GNU/Linux tools or libraries. if (TargetTriple.isAndroid()) { static const char *const AArch64AndroidTriples[] = { "aarch64-linux-android"}; static const char *const ARMAndroidTriples[] = {"arm-linux-androideabi"}; static const char *const X86AndroidTriples[] = {"i686-linux-android"}; static const char *const X86_64AndroidTriples[] = {"x86_64-linux-android"}; switch (TargetTriple.getArch()) { case llvm::Triple::aarch64: LibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); TripleAliases.append(begin(AArch64AndroidTriples), end(AArch64AndroidTriples)); break; case llvm::Triple::arm: case llvm::Triple::thumb: LibDirs.append(begin(ARMLibDirs), end(ARMLibDirs)); TripleAliases.append(begin(ARMAndroidTriples), end(ARMAndroidTriples)); break; case llvm::Triple::x86_64: LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); TripleAliases.append(begin(X86_64AndroidTriples), end(X86_64AndroidTriples)); BiarchLibDirs.append(begin(X86LibDirs), end(X86LibDirs)); BiarchTripleAliases.append(begin(X86AndroidTriples), end(X86AndroidTriples)); break; case llvm::Triple::x86: LibDirs.append(begin(X86LibDirs), end(X86LibDirs)); TripleAliases.append(begin(X86AndroidTriples), end(X86AndroidTriples)); BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); BiarchTripleAliases.append(begin(X86_64AndroidTriples), end(X86_64AndroidTriples)); break; default: break; } return; } if (TargetTriple.isOSHurd()) { switch (TargetTriple.getArch()) { case llvm::Triple::x86_64: LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); TripleAliases.push_back("x86_64-gnu"); break; case llvm::Triple::x86: LibDirs.append(begin(X86LibDirs), end(X86LibDirs)); TripleAliases.push_back("i686-gnu"); break; default: break; } return; } switch (TargetTriple.getArch()) { case llvm::Triple::aarch64: LibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); TripleAliases.append(begin(AArch64Triples), end(AArch64Triples)); BiarchLibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); BiarchTripleAliases.append(begin(AArch64Triples), end(AArch64Triples)); break; case llvm::Triple::aarch64_be: LibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs)); TripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples)); BiarchLibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs)); BiarchTripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples)); break; case llvm::Triple::arm: case llvm::Triple::thumb: LibDirs.append(begin(ARMLibDirs), end(ARMLibDirs)); if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF || TargetTriple.getEnvironment() == llvm::Triple::MuslEABIHF || TargetTriple.getEnvironment() == llvm::Triple::EABIHF) { TripleAliases.append(begin(ARMHFTriples), end(ARMHFTriples)); } else { TripleAliases.append(begin(ARMTriples), end(ARMTriples)); } break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: LibDirs.append(begin(ARMebLibDirs), end(ARMebLibDirs)); if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF || TargetTriple.getEnvironment() == llvm::Triple::MuslEABIHF || TargetTriple.getEnvironment() == llvm::Triple::EABIHF) { TripleAliases.append(begin(ARMebHFTriples), end(ARMebHFTriples)); } else { TripleAliases.append(begin(ARMebTriples), end(ARMebTriples)); } break; case llvm::Triple::avr: LibDirs.append(begin(AVRLibDirs), end(AVRLibDirs)); TripleAliases.append(begin(AVRTriples), end(AVRTriples)); break; case llvm::Triple::csky: LibDirs.append(begin(CSKYLibDirs), end(CSKYLibDirs)); TripleAliases.append(begin(CSKYTriples), end(CSKYTriples)); break; case llvm::Triple::x86_64: if (TargetTriple.isX32()) { LibDirs.append(begin(X32LibDirs), end(X32LibDirs)); TripleAliases.append(begin(X32Triples), end(X32Triples)); BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); } else { LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); TripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); BiarchLibDirs.append(begin(X32LibDirs), end(X32LibDirs)); BiarchTripleAliases.append(begin(X32Triples), end(X32Triples)); } BiarchLibDirs.append(begin(X86LibDirs), end(X86LibDirs)); BiarchTripleAliases.append(begin(X86Triples), end(X86Triples)); break; case llvm::Triple::x86: LibDirs.append(begin(X86LibDirs), end(X86LibDirs)); // MCU toolchain is 32 bit only and its triple alias is TargetTriple // itself, which will be appended below. if (!TargetTriple.isOSIAMCU()) { TripleAliases.append(begin(X86Triples), end(X86Triples)); BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); BiarchLibDirs.append(begin(X32LibDirs), end(X32LibDirs)); BiarchTripleAliases.append(begin(X32Triples), end(X32Triples)); } break; // TODO: Handle loongarch32. case llvm::Triple::loongarch64: LibDirs.append(begin(LoongArch64LibDirs), end(LoongArch64LibDirs)); TripleAliases.append(begin(LoongArch64Triples), end(LoongArch64Triples)); break; case llvm::Triple::m68k: LibDirs.append(begin(M68kLibDirs), end(M68kLibDirs)); TripleAliases.append(begin(M68kTriples), end(M68kTriples)); break; case llvm::Triple::mips: LibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs)); TripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs)); BiarchTripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples)); BiarchLibDirs.append(begin(MIPSN32LibDirs), end(MIPSN32LibDirs)); BiarchTripleAliases.append(begin(MIPSN32Triples), end(MIPSN32Triples)); break; case llvm::Triple::mipsel: LibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); TripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples)); TripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); BiarchTripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples)); BiarchLibDirs.append(begin(MIPSN32ELLibDirs), end(MIPSN32ELLibDirs)); BiarchTripleAliases.append(begin(MIPSN32ELTriples), end(MIPSN32ELTriples)); break; case llvm::Triple::mips64: LibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs)); TripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples)); BiarchLibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs)); BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPSN32LibDirs), end(MIPSN32LibDirs)); BiarchTripleAliases.append(begin(MIPSN32Triples), end(MIPSN32Triples)); break; case llvm::Triple::mips64el: LibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); TripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples)); BiarchLibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); BiarchTripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples)); BiarchLibDirs.append(begin(MIPSN32ELLibDirs), end(MIPSN32ELLibDirs)); BiarchTripleAliases.append(begin(MIPSN32ELTriples), end(MIPSN32ELTriples)); BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); break; case llvm::Triple::msp430: LibDirs.append(begin(MSP430LibDirs), end(MSP430LibDirs)); TripleAliases.append(begin(MSP430Triples), end(MSP430Triples)); break; case llvm::Triple::ppc: LibDirs.append(begin(PPCLibDirs), end(PPCLibDirs)); TripleAliases.append(begin(PPCTriples), end(PPCTriples)); BiarchLibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs)); BiarchTripleAliases.append(begin(PPC64Triples), end(PPC64Triples)); break; case llvm::Triple::ppcle: LibDirs.append(begin(PPCLELibDirs), end(PPCLELibDirs)); TripleAliases.append(begin(PPCLETriples), end(PPCLETriples)); BiarchLibDirs.append(begin(PPC64LELibDirs), end(PPC64LELibDirs)); BiarchTripleAliases.append(begin(PPC64LETriples), end(PPC64LETriples)); break; case llvm::Triple::ppc64: LibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs)); TripleAliases.append(begin(PPC64Triples), end(PPC64Triples)); BiarchLibDirs.append(begin(PPCLibDirs), end(PPCLibDirs)); BiarchTripleAliases.append(begin(PPCTriples), end(PPCTriples)); break; case llvm::Triple::ppc64le: LibDirs.append(begin(PPC64LELibDirs), end(PPC64LELibDirs)); TripleAliases.append(begin(PPC64LETriples), end(PPC64LETriples)); BiarchLibDirs.append(begin(PPCLELibDirs), end(PPCLELibDirs)); BiarchTripleAliases.append(begin(PPCLETriples), end(PPCLETriples)); break; case llvm::Triple::riscv32: LibDirs.append(begin(RISCV32LibDirs), end(RISCV32LibDirs)); TripleAliases.append(begin(RISCV32Triples), end(RISCV32Triples)); BiarchLibDirs.append(begin(RISCV64LibDirs), end(RISCV64LibDirs)); BiarchTripleAliases.append(begin(RISCV64Triples), end(RISCV64Triples)); break; case llvm::Triple::riscv64: LibDirs.append(begin(RISCV64LibDirs), end(RISCV64LibDirs)); TripleAliases.append(begin(RISCV64Triples), end(RISCV64Triples)); BiarchLibDirs.append(begin(RISCV32LibDirs), end(RISCV32LibDirs)); BiarchTripleAliases.append(begin(RISCV32Triples), end(RISCV32Triples)); break; case llvm::Triple::sparc: case llvm::Triple::sparcel: LibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs)); TripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples)); BiarchLibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs)); BiarchTripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples)); break; case llvm::Triple::sparcv9: LibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs)); TripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples)); BiarchLibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs)); BiarchTripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples)); break; case llvm::Triple::systemz: LibDirs.append(begin(SystemZLibDirs), end(SystemZLibDirs)); TripleAliases.append(begin(SystemZTriples), end(SystemZTriples)); break; default: // By default, just rely on the standard lib directories and the original // triple. break; } // Also include the multiarch variant if it's different. if (TargetTriple.str() != BiarchTriple.str()) BiarchTripleAliases.push_back(BiarchTriple.str()); } bool Generic_GCC::GCCInstallationDetector::ScanGCCForMultilibs( const llvm::Triple &TargetTriple, const ArgList &Args, StringRef Path, bool NeedsBiarchSuffix) { llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); DetectedMultilibs Detected; // Android standalone toolchain could have multilibs for ARM and Thumb. // Debian mips multilibs behave more like the rest of the biarch ones, // so handle them there if (isArmOrThumbArch(TargetArch) && TargetTriple.isAndroid()) { // It should also work without multilibs in a simplified toolchain. findAndroidArmMultilibs(D, TargetTriple, Path, Args, Detected); } else if (TargetTriple.isCSKY()) { findCSKYMultilibs(D, TargetTriple, Path, Args, Detected); } else if (TargetTriple.isMIPS()) { if (!findMIPSMultilibs(D, TargetTriple, Path, Args, Detected)) return false; } else if (TargetTriple.isRISCV()) { findRISCVMultilibs(D, TargetTriple, Path, Args, Detected); } else if (isMSP430(TargetArch)) { findMSP430Multilibs(D, TargetTriple, Path, Args, Detected); } else if (TargetArch == llvm::Triple::avr) { // AVR has no multilibs. } else if (!findBiarchMultilibs(D, TargetTriple, Path, Args, NeedsBiarchSuffix, Detected)) { return false; } Multilibs = Detected.Multilibs; SelectedMultilib = Detected.SelectedMultilibs.empty() ? Multilib() : Detected.SelectedMultilibs.back(); BiarchSibling = Detected.BiarchSibling; return true; } void Generic_GCC::GCCInstallationDetector::ScanLibDirForGCCTriple( const llvm::Triple &TargetTriple, const ArgList &Args, const std::string &LibDir, StringRef CandidateTriple, bool NeedsBiarchSuffix, bool GCCDirExists, bool GCCCrossDirExists) { // Locations relative to the system lib directory where GCC's triple-specific // directories might reside. struct GCCLibSuffix { // Path from system lib directory to GCC triple-specific directory. std::string LibSuffix; // Path from GCC triple-specific directory back to system lib directory. // This is one '..' component per component in LibSuffix. StringRef ReversePath; // Whether this library suffix is relevant for the triple. bool Active; } Suffixes[] = { // This is the normal place. {"gcc/" + CandidateTriple.str(), "../..", GCCDirExists}, // Debian puts cross-compilers in gcc-cross. {"gcc-cross/" + CandidateTriple.str(), "../..", GCCCrossDirExists}, // The Freescale PPC SDK has the gcc libraries in // /usr/lib//x.y.z so have a look there as well. Only do // this on Freescale triples, though, since some systems put a *lot* of // files in that location, not just GCC installation data. {CandidateTriple.str(), "..", TargetTriple.getVendor() == llvm::Triple::Freescale || TargetTriple.getVendor() == llvm::Triple::OpenEmbedded}}; for (auto &Suffix : Suffixes) { if (!Suffix.Active) continue; StringRef LibSuffix = Suffix.LibSuffix; std::error_code EC; for (llvm::vfs::directory_iterator LI = D.getVFS().dir_begin(LibDir + "/" + LibSuffix, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->path()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); if (CandidateVersion.Major != -1) // Filter obviously bad entries. if (!CandidateGCCInstallPaths.insert(std::string(LI->path())).second) continue; // Saw this path before; no need to look at it again. if (CandidateVersion.isOlderThan(4, 1, 1)) continue; if (CandidateVersion <= Version) continue; if (!ScanGCCForMultilibs(TargetTriple, Args, LI->path(), NeedsBiarchSuffix)) continue; Version = CandidateVersion; GCCTriple.setTriple(CandidateTriple); // FIXME: We hack together the directory name here instead of // using LI to ensure stable path separators across Windows and // Linux. GCCInstallPath = (LibDir + "/" + LibSuffix + "/" + VersionText).str(); GCCParentLibPath = (GCCInstallPath + "/../" + Suffix.ReversePath).str(); IsValid = true; } } } bool Generic_GCC::GCCInstallationDetector::ScanGentooConfigs( const llvm::Triple &TargetTriple, const ArgList &Args, const SmallVectorImpl &CandidateTriples, const SmallVectorImpl &CandidateBiarchTriples) { if (!D.getVFS().exists(concat(D.SysRoot, GentooConfigDir))) return false; for (StringRef CandidateTriple : CandidateTriples) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple)) return true; } for (StringRef CandidateTriple : CandidateBiarchTriples) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple, true)) return true; } return false; } bool Generic_GCC::GCCInstallationDetector::ScanGentooGccConfig( const llvm::Triple &TargetTriple, const ArgList &Args, StringRef CandidateTriple, bool NeedsBiarchSuffix) { llvm::ErrorOr> File = D.getVFS().getBufferForFile(concat(D.SysRoot, GentooConfigDir, "/config-" + CandidateTriple.str())); if (File) { SmallVector Lines; File.get()->getBuffer().split(Lines, "\n"); for (StringRef Line : Lines) { Line = Line.trim(); // CURRENT=triple-version if (!Line.consume_front("CURRENT=")) continue; // Process the config file pointed to by CURRENT. llvm::ErrorOr> ConfigFile = D.getVFS().getBufferForFile( concat(D.SysRoot, GentooConfigDir, "/" + Line)); std::pair ActiveVersion = Line.rsplit('-'); // List of paths to scan for libraries. SmallVector GentooScanPaths; // Scan the Config file to find installed GCC libraries path. // Typical content of the GCC config file: // LDPATH="/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.x:/usr/lib/gcc/ // (continued from previous line) x86_64-pc-linux-gnu/4.9.x/32" // MANPATH="/usr/share/gcc-data/x86_64-pc-linux-gnu/4.9.x/man" // INFOPATH="/usr/share/gcc-data/x86_64-pc-linux-gnu/4.9.x/info" // STDCXX_INCDIR="/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.x/include/g++-v4" // We are looking for the paths listed in LDPATH=... . if (ConfigFile) { SmallVector ConfigLines; ConfigFile.get()->getBuffer().split(ConfigLines, "\n"); for (StringRef ConfLine : ConfigLines) { ConfLine = ConfLine.trim(); if (ConfLine.consume_front("LDPATH=")) { // Drop '"' from front and back if present. ConfLine.consume_back("\""); ConfLine.consume_front("\""); // Get all paths sperated by ':' ConfLine.split(GentooScanPaths, ':', -1, /*AllowEmpty*/ false); } } } // Test the path based on the version in /etc/env.d/gcc/config-{tuple}. std::string basePath = "/usr/lib/gcc/" + ActiveVersion.first.str() + "/" + ActiveVersion.second.str(); GentooScanPaths.push_back(StringRef(basePath)); // Scan all paths for GCC libraries. for (const auto &GentooScanPath : GentooScanPaths) { std::string GentooPath = concat(D.SysRoot, GentooScanPath); if (D.getVFS().exists(GentooPath + "/crtbegin.o")) { if (!ScanGCCForMultilibs(TargetTriple, Args, GentooPath, NeedsBiarchSuffix)) continue; Version = GCCVersion::Parse(ActiveVersion.second); GCCInstallPath = GentooPath; GCCParentLibPath = GentooPath + std::string("/../../.."); GCCTriple.setTriple(ActiveVersion.first); IsValid = true; return true; } } } } return false; } Generic_GCC::Generic_GCC(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : ToolChain(D, Triple, Args), GCCInstallation(D), CudaInstallation(D, Triple, Args), RocmInstallation(D, Triple, Args) { getProgramPaths().push_back(getDriver().Dir); } Generic_GCC::~Generic_GCC() {} Tool *Generic_GCC::getTool(Action::ActionClass AC) const { switch (AC) { case Action::PreprocessJobClass: if (!Preprocess) Preprocess.reset(new clang::driver::tools::gcc::Preprocessor(*this)); return Preprocess.get(); case Action::CompileJobClass: if (!Compile) Compile.reset(new tools::gcc::Compiler(*this)); return Compile.get(); default: return ToolChain::getTool(AC); } } Tool *Generic_GCC::buildAssembler() const { return new tools::gnutools::Assembler(*this); } Tool *Generic_GCC::buildLinker() const { return new tools::gcc::Linker(*this); } void Generic_GCC::printVerboseInfo(raw_ostream &OS) const { // Print the information about how we detected the GCC installation. GCCInstallation.print(OS); CudaInstallation->print(OS); RocmInstallation->print(OS); } ToolChain::UnwindTableLevel Generic_GCC::getDefaultUnwindTableLevel(const ArgList &Args) const { switch (getArch()) { case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: case llvm::Triple::ppc: case llvm::Triple::ppcle: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: case llvm::Triple::riscv32: case llvm::Triple::riscv64: case llvm::Triple::x86: case llvm::Triple::x86_64: return UnwindTableLevel::Asynchronous; default: return UnwindTableLevel::None; } } bool Generic_GCC::isPICDefault() const { switch (getArch()) { case llvm::Triple::x86_64: return getTriple().isOSWindows(); case llvm::Triple::mips64: case llvm::Triple::mips64el: return true; default: return false; } } bool Generic_GCC::isPIEDefault(const llvm::opt::ArgList &Args) const { return false; } bool Generic_GCC::isPICDefaultForced() const { return getArch() == llvm::Triple::x86_64 && getTriple().isOSWindows(); } bool Generic_GCC::IsIntegratedAssemblerDefault() const { switch (getTriple().getArch()) { case llvm::Triple::nvptx: case llvm::Triple::nvptx64: case llvm::Triple::xcore: return false; default: return true; } } void Generic_GCC::PushPPaths(ToolChain::path_list &PPaths) { // Cross-compiling binutils and GCC installations (vanilla and openSUSE at // least) put various tools in a triple-prefixed directory off of the parent // of the GCC installation. We use the GCC triple here to ensure that we end // up with tools that support the same amount of cross compiling as the // detected GCC installation. For example, if we find a GCC installation // targeting x86_64, but it is a bi-arch GCC installation, it can also be // used to target i386. if (GCCInstallation.isValid()) { PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../" + GCCInstallation.getTriple().str() + "/bin") .str()); } } void Generic_GCC::AddMultilibPaths(const Driver &D, const std::string &SysRoot, const std::string &OSLibDir, const std::string &MultiarchTriple, path_list &Paths) { // Add the multilib suffixed paths where they are available. if (GCCInstallation.isValid()) { assert(!SelectedMultilibs.empty()); const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); const std::string &LibPath = std::string(GCCInstallation.getParentLibPath()); // Sourcery CodeBench MIPS toolchain holds some libraries under // a biarch-like suffix of the GCC installation. if (const auto &PathsCallback = Multilibs.filePathsCallback()) for (const auto &Path : PathsCallback(SelectedMultilibs.back())) addPathIfExists(D, GCCInstallation.getInstallPath() + Path, Paths); // Add lib/gcc/$triple/$version, with an optional /multilib suffix. addPathIfExists(D, GCCInstallation.getInstallPath() + SelectedMultilibs.back().gccSuffix(), Paths); // Add lib/gcc/$triple/$libdir // For GCC built with --enable-version-specific-runtime-libs. addPathIfExists(D, GCCInstallation.getInstallPath() + "/../" + OSLibDir, Paths); // GCC cross compiling toolchains will install target libraries which ship // as part of the toolchain under // rather than as // any part of the GCC installation in // //gcc//. This decision is somewhat // debatable, but is the reality today. We need to search this tree even // when we have a sysroot somewhere else. It is the responsibility of // whomever is doing the cross build targeting a sysroot using a GCC // installation that is *not* within the system root to ensure two things: // // 1) Any DSOs that are linked in from this tree or from the install path // above must be present on the system root and found via an // appropriate rpath. // 2) There must not be libraries installed into // // unless they should be preferred over // those within the system root. // // Note that this matches the GCC behavior. See the below comment for where // Clang diverges from GCC's behavior. addPathIfExists(D, LibPath + "/../" + GCCTriple.str() + "/lib/../" + OSLibDir + SelectedMultilibs.back().osSuffix(), Paths); // If the GCC installation we found is inside of the sysroot, we want to // prefer libraries installed in the parent prefix of the GCC installation. // It is important to *not* use these paths when the GCC installation is // outside of the system root as that can pick up unintended libraries. // This usually happens when there is an external cross compiler on the // host system, and a more minimal sysroot available that is the target of // the cross. Note that GCC does include some of these directories in some // configurations but this seems somewhere between questionable and simply // a bug. if (StringRef(LibPath).starts_with(SysRoot)) addPathIfExists(D, LibPath + "/../" + OSLibDir, Paths); } } void Generic_GCC::AddMultiarchPaths(const Driver &D, const std::string &SysRoot, const std::string &OSLibDir, path_list &Paths) { if (GCCInstallation.isValid()) { const std::string &LibPath = std::string(GCCInstallation.getParentLibPath()); const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); const Multilib &Multilib = GCCInstallation.getMultilib(); addPathIfExists( D, LibPath + "/../" + GCCTriple.str() + "/lib" + Multilib.osSuffix(), Paths); } } void Generic_GCC::AddMultilibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Add include directories specific to the selected multilib set and multilib. if (!GCCInstallation.isValid()) return; // gcc TOOL_INCLUDE_DIR. const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); std::string LibPath(GCCInstallation.getParentLibPath()); addSystemInclude(DriverArgs, CC1Args, Twine(LibPath) + "/../" + GCCTriple.str() + "/include"); const auto &Callback = Multilibs.includeDirsCallback(); if (Callback) { for (const auto &Path : Callback(GCCInstallation.getMultilib())) addExternCSystemIncludeIfExists(DriverArgs, CC1Args, GCCInstallation.getInstallPath() + Path); } } void Generic_GCC::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdinc, options::OPT_nostdincxx, options::OPT_nostdlibinc)) return; switch (GetCXXStdlibType(DriverArgs)) { case ToolChain::CST_Libcxx: addLibCxxIncludePaths(DriverArgs, CC1Args); break; case ToolChain::CST_Libstdcxx: addLibStdCxxIncludePaths(DriverArgs, CC1Args); break; } } void Generic_GCC::addLibCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { const Driver &D = getDriver(); std::string SysRoot = computeSysRoot(); if (SysRoot.empty()) SysRoot = llvm::sys::path::get_separator(); auto AddIncludePath = [&](StringRef Path, bool TargetDirRequired = false) { std::string Version = detectLibcxxVersion(Path); if (Version.empty()) return false; // First add the per-target include path if it exists. bool TargetDirExists = false; std::optional TargetIncludeDir = getTargetSubDirPath(Path); if (TargetIncludeDir) { SmallString<128> TargetDir(*TargetIncludeDir); llvm::sys::path::append(TargetDir, "c++", Version); if (D.getVFS().exists(TargetDir)) { addSystemInclude(DriverArgs, CC1Args, TargetDir); TargetDirExists = true; } } if (TargetDirRequired && !TargetDirExists) return false; // Second add the generic one. SmallString<128> GenericDir(Path); llvm::sys::path::append(GenericDir, "c++", Version); addSystemInclude(DriverArgs, CC1Args, GenericDir); return true; }; // Android only uses the libc++ headers installed alongside the toolchain if // they contain an Android-specific target include path, otherwise they're // incompatible with the NDK libraries. SmallString<128> DriverIncludeDir(getDriver().Dir); llvm::sys::path::append(DriverIncludeDir, "..", "include"); if (AddIncludePath(DriverIncludeDir, /*TargetDirRequired=*/getTriple().isAndroid())) return; // If this is a development, non-installed, clang, libcxx will // not be found at ../include/c++ but it likely to be found at // one of the following two locations: SmallString<128> UsrLocalIncludeDir(SysRoot); llvm::sys::path::append(UsrLocalIncludeDir, "usr", "local", "include"); if (AddIncludePath(UsrLocalIncludeDir)) return; SmallString<128> UsrIncludeDir(SysRoot); llvm::sys::path::append(UsrIncludeDir, "usr", "include"); if (AddIncludePath(UsrIncludeDir)) return; } bool Generic_GCC::addLibStdCXXIncludePaths(Twine IncludeDir, StringRef Triple, Twine IncludeSuffix, const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, bool DetectDebian) const { if (!getVFS().exists(IncludeDir)) return false; // Debian native gcc uses g++-multiarch-incdir.diff which uses // include/x86_64-linux-gnu/c++/10$IncludeSuffix instead of // include/c++/10/x86_64-linux-gnu$IncludeSuffix. std::string Dir = IncludeDir.str(); StringRef Include = llvm::sys::path::parent_path(llvm::sys::path::parent_path(Dir)); std::string Path = (Include + "/" + Triple + Dir.substr(Include.size()) + IncludeSuffix) .str(); if (DetectDebian && !getVFS().exists(Path)) return false; // GPLUSPLUS_INCLUDE_DIR addSystemInclude(DriverArgs, CC1Args, IncludeDir); // GPLUSPLUS_TOOL_INCLUDE_DIR. If Triple is not empty, add a target-dependent // include directory. if (DetectDebian) addSystemInclude(DriverArgs, CC1Args, Path); else if (!Triple.empty()) addSystemInclude(DriverArgs, CC1Args, IncludeDir + "/" + Triple + IncludeSuffix); // GPLUSPLUS_BACKWARD_INCLUDE_DIR addSystemInclude(DriverArgs, CC1Args, IncludeDir + "/backward"); return true; } bool Generic_GCC::addGCCLibStdCxxIncludePaths( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, StringRef DebianMultiarch) const { assert(GCCInstallation.isValid()); // By default, look for the C++ headers in an include directory adjacent to // the lib directory of the GCC installation. Note that this is expect to be // equivalent to '/usr/include/c++/X.Y' in almost all cases. StringRef LibDir = GCCInstallation.getParentLibPath(); StringRef InstallDir = GCCInstallation.getInstallPath(); StringRef TripleStr = GCCInstallation.getTriple().str(); const Multilib &Multilib = GCCInstallation.getMultilib(); const GCCVersion &Version = GCCInstallation.getVersion(); // Try /../$triple/include/c++/$version (gcc --print-multiarch is not empty). if (addLibStdCXXIncludePaths( LibDir.str() + "/../" + TripleStr + "/include/c++/" + Version.Text, TripleStr, Multilib.includeSuffix(), DriverArgs, CC1Args)) return true; // Try /gcc/$triple/$version/include/c++/ (gcc --print-multiarch is not // empty). Like above but for GCC built with // --enable-version-specific-runtime-libs. if (addLibStdCXXIncludePaths(LibDir.str() + "/gcc/" + TripleStr + "/" + Version.Text + "/include/c++/", TripleStr, Multilib.includeSuffix(), DriverArgs, CC1Args)) return true; // Detect Debian g++-multiarch-incdir.diff. if (addLibStdCXXIncludePaths(LibDir.str() + "/../include/c++/" + Version.Text, DebianMultiarch, Multilib.includeSuffix(), DriverArgs, CC1Args, /*Debian=*/true)) return true; // Try /../include/c++/$version (gcc --print-multiarch is empty). if (addLibStdCXXIncludePaths(LibDir.str() + "/../include/c++/" + Version.Text, TripleStr, Multilib.includeSuffix(), DriverArgs, CC1Args)) return true; // Otherwise, fall back on a bunch of options which don't use multiarch // layouts for simplicity. const std::string LibStdCXXIncludePathCandidates[] = { // Gentoo is weird and places its headers inside the GCC install, // so if the first attempt to find the headers fails, try these patterns. InstallDir.str() + "/include/g++-v" + Version.Text, InstallDir.str() + "/include/g++-v" + Version.MajorStr + "." + Version.MinorStr, InstallDir.str() + "/include/g++-v" + Version.MajorStr, }; for (const auto &IncludePath : LibStdCXXIncludePathCandidates) { if (addLibStdCXXIncludePaths(IncludePath, TripleStr, Multilib.includeSuffix(), DriverArgs, CC1Args)) return true; } return false; } void Generic_GCC::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { if (GCCInstallation.isValid()) { addGCCLibStdCxxIncludePaths(DriverArgs, CC1Args, GCCInstallation.getTriple().str()); } } llvm::opt::DerivedArgList * Generic_GCC::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef, Action::OffloadKind DeviceOffloadKind) const { // If this tool chain is used for an OpenMP offloading device we have to make // sure we always generate a shared library regardless of the commands the // user passed to the host. This is required because the runtime library // is required to load the device image dynamically at run time. if (DeviceOffloadKind == Action::OFK_OpenMP) { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // Request the shared library. Given that these options are decided // implicitly, they do not refer to any base argument. DAL->AddFlagArg(/*BaseArg=*/nullptr, Opts.getOption(options::OPT_shared)); DAL->AddFlagArg(/*BaseArg=*/nullptr, Opts.getOption(options::OPT_fPIC)); // Filter all the arguments we don't care passing to the offloading // toolchain as they can mess up with the creation of a shared library. for (auto *A : Args) { switch ((options::ID)A->getOption().getID()) { default: DAL->append(A); break; case options::OPT_shared: case options::OPT_dynamic: case options::OPT_static: case options::OPT_fPIC: case options::OPT_fno_PIC: case options::OPT_fpic: case options::OPT_fno_pic: case options::OPT_fPIE: case options::OPT_fno_PIE: case options::OPT_fpie: case options::OPT_fno_pie: break; } } return DAL; } return nullptr; } void Generic_ELF::anchor() {} void Generic_ELF::addClangTargetOptions(const ArgList &DriverArgs, ArgStringList &CC1Args, Action::OffloadKind) const { if (!DriverArgs.hasFlag(options::OPT_fuse_init_array, options::OPT_fno_use_init_array, true)) CC1Args.push_back("-fno-use-init-array"); }