//===--- AMDGPU.cpp - AMDGPU ToolChain Implementations ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "CommonArgs.h" #include "clang/Basic/TargetID.h" #include "clang/Config/config.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/InputInfo.h" #include "clang/Driver/Options.h" #include "clang/Driver/SanitizerArgs.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/Error.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/TargetParser/Host.h" #include #include using namespace clang::driver; using namespace clang::driver::tools; using namespace clang::driver::toolchains; using namespace clang; using namespace llvm::opt; // Look for sub-directory starts with PackageName under ROCm candidate path. // If there is one and only one matching sub-directory found, append the // sub-directory to Path. If there is no matching sub-directory or there are // more than one matching sub-directories, diagnose them. Returns the full // path of the package if there is only one matching sub-directory, otherwise // returns an empty string. llvm::SmallString<0> RocmInstallationDetector::findSPACKPackage(const Candidate &Cand, StringRef PackageName) { if (!Cand.isSPACK()) return {}; std::error_code EC; std::string Prefix = Twine(PackageName + "-" + Cand.SPACKReleaseStr).str(); llvm::SmallVector> SubDirs; for (llvm::vfs::directory_iterator File = D.getVFS().dir_begin(Cand.Path, EC), FileEnd; File != FileEnd && !EC; File.increment(EC)) { llvm::StringRef FileName = llvm::sys::path::filename(File->path()); if (FileName.starts_with(Prefix)) { SubDirs.push_back(FileName); if (SubDirs.size() > 1) break; } } if (SubDirs.size() == 1) { auto PackagePath = Cand.Path; llvm::sys::path::append(PackagePath, SubDirs[0]); return PackagePath; } if (SubDirs.size() == 0 && Verbose) { llvm::errs() << "SPACK package " << Prefix << " not found at " << Cand.Path << '\n'; return {}; } if (SubDirs.size() > 1 && Verbose) { llvm::errs() << "Cannot use SPACK package " << Prefix << " at " << Cand.Path << " due to multiple installations for the same version\n"; } return {}; } void RocmInstallationDetector::scanLibDevicePath(llvm::StringRef Path) { assert(!Path.empty()); const StringRef Suffix(".bc"); const StringRef Suffix2(".amdgcn.bc"); std::error_code EC; for (llvm::vfs::directory_iterator LI = D.getVFS().dir_begin(Path, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); if (!FileName.ends_with(Suffix)) continue; StringRef BaseName; if (FileName.ends_with(Suffix2)) BaseName = FileName.drop_back(Suffix2.size()); else if (FileName.ends_with(Suffix)) BaseName = FileName.drop_back(Suffix.size()); const StringRef ABIVersionPrefix = "oclc_abi_version_"; if (BaseName == "ocml") { OCML = FilePath; } else if (BaseName == "ockl") { OCKL = FilePath; } else if (BaseName == "opencl") { OpenCL = FilePath; } else if (BaseName == "hip") { HIP = FilePath; } else if (BaseName == "asanrtl") { AsanRTL = FilePath; } else if (BaseName == "oclc_finite_only_off") { FiniteOnly.Off = FilePath; } else if (BaseName == "oclc_finite_only_on") { FiniteOnly.On = FilePath; } else if (BaseName == "oclc_daz_opt_on") { DenormalsAreZero.On = FilePath; } else if (BaseName == "oclc_daz_opt_off") { DenormalsAreZero.Off = FilePath; } else if (BaseName == "oclc_correctly_rounded_sqrt_on") { CorrectlyRoundedSqrt.On = FilePath; } else if (BaseName == "oclc_correctly_rounded_sqrt_off") { CorrectlyRoundedSqrt.Off = FilePath; } else if (BaseName == "oclc_unsafe_math_on") { UnsafeMath.On = FilePath; } else if (BaseName == "oclc_unsafe_math_off") { UnsafeMath.Off = FilePath; } else if (BaseName == "oclc_wavefrontsize64_on") { WavefrontSize64.On = FilePath; } else if (BaseName == "oclc_wavefrontsize64_off") { WavefrontSize64.Off = FilePath; } else if (BaseName.starts_with(ABIVersionPrefix)) { unsigned ABIVersionNumber; if (BaseName.drop_front(ABIVersionPrefix.size()) .getAsInteger(/*Redex=*/0, ABIVersionNumber)) continue; ABIVersionMap[ABIVersionNumber] = FilePath.str(); } else { // Process all bitcode filenames that look like // ocl_isa_version_XXX.amdgcn.bc const StringRef DeviceLibPrefix = "oclc_isa_version_"; if (!BaseName.starts_with(DeviceLibPrefix)) continue; StringRef IsaVersionNumber = BaseName.drop_front(DeviceLibPrefix.size()); llvm::Twine GfxName = Twine("gfx") + IsaVersionNumber; SmallString<8> Tmp; LibDeviceMap.insert( std::make_pair(GfxName.toStringRef(Tmp), FilePath.str())); } } } // Parse and extract version numbers from `.hipVersion`. Return `true` if // the parsing fails. bool RocmInstallationDetector::parseHIPVersionFile(llvm::StringRef V) { SmallVector VersionParts; V.split(VersionParts, '\n'); unsigned Major = ~0U; unsigned Minor = ~0U; for (auto Part : VersionParts) { auto Splits = Part.rtrim().split('='); if (Splits.first == "HIP_VERSION_MAJOR") { if (Splits.second.getAsInteger(0, Major)) return true; } else if (Splits.first == "HIP_VERSION_MINOR") { if (Splits.second.getAsInteger(0, Minor)) return true; } else if (Splits.first == "HIP_VERSION_PATCH") VersionPatch = Splits.second.str(); } if (Major == ~0U || Minor == ~0U) return true; VersionMajorMinor = llvm::VersionTuple(Major, Minor); DetectedVersion = (Twine(Major) + "." + Twine(Minor) + "." + VersionPatch).str(); return false; } /// \returns a list of candidate directories for ROCm installation, which is /// cached and populated only once. const SmallVectorImpl & RocmInstallationDetector::getInstallationPathCandidates() { // Return the cached candidate list if it has already been populated. if (!ROCmSearchDirs.empty()) return ROCmSearchDirs; auto DoPrintROCmSearchDirs = [&]() { if (PrintROCmSearchDirs) for (auto Cand : ROCmSearchDirs) { llvm::errs() << "ROCm installation search path"; if (Cand.isSPACK()) llvm::errs() << " (Spack " << Cand.SPACKReleaseStr << ")"; llvm::errs() << ": " << Cand.Path << '\n'; } }; // For candidate specified by --rocm-path we do not do strict check, i.e., // checking existence of HIP version file and device library files. if (!RocmPathArg.empty()) { ROCmSearchDirs.emplace_back(RocmPathArg.str()); DoPrintROCmSearchDirs(); return ROCmSearchDirs; } else if (std::optional RocmPathEnv = llvm::sys::Process::GetEnv("ROCM_PATH")) { if (!RocmPathEnv->empty()) { ROCmSearchDirs.emplace_back(std::move(*RocmPathEnv)); DoPrintROCmSearchDirs(); return ROCmSearchDirs; } } // Try to find relative to the compiler binary. StringRef InstallDir = D.Dir; // Check both a normal Unix prefix position of the clang binary, as well as // the Windows-esque layout the ROCm packages use with the host architecture // subdirectory of bin. auto DeduceROCmPath = [](StringRef ClangPath) { // Strip off directory (usually bin) StringRef ParentDir = llvm::sys::path::parent_path(ClangPath); StringRef ParentName = llvm::sys::path::filename(ParentDir); // Some builds use bin/{host arch}, so go up again. if (ParentName == "bin") { ParentDir = llvm::sys::path::parent_path(ParentDir); ParentName = llvm::sys::path::filename(ParentDir); } // Detect ROCm packages built with SPACK. // clang is installed at // /llvm-amdgpu--/bin directory. // We only consider the parent directory of llvm-amdgpu package as ROCm // installation candidate for SPACK. if (ParentName.starts_with("llvm-amdgpu-")) { auto SPACKPostfix = ParentName.drop_front(strlen("llvm-amdgpu-")).split('-'); auto SPACKReleaseStr = SPACKPostfix.first; if (!SPACKReleaseStr.empty()) { ParentDir = llvm::sys::path::parent_path(ParentDir); return Candidate(ParentDir.str(), /*StrictChecking=*/true, SPACKReleaseStr); } } // Some versions of the rocm llvm package install to /opt/rocm/llvm/bin // Some versions of the aomp package install to /opt/rocm/aomp/bin if (ParentName == "llvm" || ParentName.starts_with("aomp")) ParentDir = llvm::sys::path::parent_path(ParentDir); return Candidate(ParentDir.str(), /*StrictChecking=*/true); }; // Deduce ROCm path by the path used to invoke clang. Do not resolve symbolic // link of clang itself. ROCmSearchDirs.emplace_back(DeduceROCmPath(InstallDir)); // Deduce ROCm path by the real path of the invoked clang, resolving symbolic // link of clang itself. llvm::SmallString<256> RealClangPath; llvm::sys::fs::real_path(D.getClangProgramPath(), RealClangPath); auto ParentPath = llvm::sys::path::parent_path(RealClangPath); if (ParentPath != InstallDir) ROCmSearchDirs.emplace_back(DeduceROCmPath(ParentPath)); // Device library may be installed in clang or resource directory. auto ClangRoot = llvm::sys::path::parent_path(InstallDir); auto RealClangRoot = llvm::sys::path::parent_path(ParentPath); ROCmSearchDirs.emplace_back(ClangRoot.str(), /*StrictChecking=*/true); if (RealClangRoot != ClangRoot) ROCmSearchDirs.emplace_back(RealClangRoot.str(), /*StrictChecking=*/true); ROCmSearchDirs.emplace_back(D.ResourceDir, /*StrictChecking=*/true); ROCmSearchDirs.emplace_back(D.SysRoot + "/opt/rocm", /*StrictChecking=*/true); // Find the latest /opt/rocm-{release} directory. std::error_code EC; std::string LatestROCm; llvm::VersionTuple LatestVer; // Get ROCm version from ROCm directory name. auto GetROCmVersion = [](StringRef DirName) { llvm::VersionTuple V; std::string VerStr = DirName.drop_front(strlen("rocm-")).str(); // The ROCm directory name follows the format of // rocm-{major}.{minor}.{subMinor}[-{build}] std::replace(VerStr.begin(), VerStr.end(), '-', '.'); V.tryParse(VerStr); return V; }; for (llvm::vfs::directory_iterator File = D.getVFS().dir_begin(D.SysRoot + "/opt", EC), FileEnd; File != FileEnd && !EC; File.increment(EC)) { llvm::StringRef FileName = llvm::sys::path::filename(File->path()); if (!FileName.starts_with("rocm-")) continue; if (LatestROCm.empty()) { LatestROCm = FileName.str(); LatestVer = GetROCmVersion(LatestROCm); continue; } auto Ver = GetROCmVersion(FileName); if (LatestVer < Ver) { LatestROCm = FileName.str(); LatestVer = Ver; } } if (!LatestROCm.empty()) ROCmSearchDirs.emplace_back(D.SysRoot + "/opt/" + LatestROCm, /*StrictChecking=*/true); ROCmSearchDirs.emplace_back(D.SysRoot + "/usr/local", /*StrictChecking=*/true); ROCmSearchDirs.emplace_back(D.SysRoot + "/usr", /*StrictChecking=*/true); DoPrintROCmSearchDirs(); return ROCmSearchDirs; } RocmInstallationDetector::RocmInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args, bool DetectHIPRuntime, bool DetectDeviceLib) : D(D) { Verbose = Args.hasArg(options::OPT_v); RocmPathArg = Args.getLastArgValue(clang::driver::options::OPT_rocm_path_EQ); PrintROCmSearchDirs = Args.hasArg(clang::driver::options::OPT_print_rocm_search_dirs); RocmDeviceLibPathArg = Args.getAllArgValues(clang::driver::options::OPT_rocm_device_lib_path_EQ); HIPPathArg = Args.getLastArgValue(clang::driver::options::OPT_hip_path_EQ); HIPStdParPathArg = Args.getLastArgValue(clang::driver::options::OPT_hipstdpar_path_EQ); HasHIPStdParLibrary = !HIPStdParPathArg.empty() && D.getVFS().exists(HIPStdParPathArg + "/hipstdpar_lib.hpp"); HIPRocThrustPathArg = Args.getLastArgValue(clang::driver::options::OPT_hipstdpar_thrust_path_EQ); HasRocThrustLibrary = !HIPRocThrustPathArg.empty() && D.getVFS().exists(HIPRocThrustPathArg + "/thrust"); HIPRocPrimPathArg = Args.getLastArgValue(clang::driver::options::OPT_hipstdpar_prim_path_EQ); HasRocPrimLibrary = !HIPRocPrimPathArg.empty() && D.getVFS().exists(HIPRocPrimPathArg + "/rocprim"); if (auto *A = Args.getLastArg(clang::driver::options::OPT_hip_version_EQ)) { HIPVersionArg = A->getValue(); unsigned Major = ~0U; unsigned Minor = ~0U; SmallVector Parts; HIPVersionArg.split(Parts, '.'); if (Parts.size()) Parts[0].getAsInteger(0, Major); if (Parts.size() > 1) Parts[1].getAsInteger(0, Minor); if (Parts.size() > 2) VersionPatch = Parts[2].str(); if (VersionPatch.empty()) VersionPatch = "0"; if (Major != ~0U && Minor == ~0U) Minor = 0; if (Major == ~0U || Minor == ~0U) D.Diag(diag::err_drv_invalid_value) << A->getAsString(Args) << HIPVersionArg; VersionMajorMinor = llvm::VersionTuple(Major, Minor); DetectedVersion = (Twine(Major) + "." + Twine(Minor) + "." + VersionPatch).str(); } else { VersionPatch = DefaultVersionPatch; VersionMajorMinor = llvm::VersionTuple(DefaultVersionMajor, DefaultVersionMinor); DetectedVersion = (Twine(DefaultVersionMajor) + "." + Twine(DefaultVersionMinor) + "." + VersionPatch) .str(); } if (DetectHIPRuntime) detectHIPRuntime(); if (DetectDeviceLib) detectDeviceLibrary(); } void RocmInstallationDetector::detectDeviceLibrary() { assert(LibDevicePath.empty()); if (!RocmDeviceLibPathArg.empty()) LibDevicePath = RocmDeviceLibPathArg[RocmDeviceLibPathArg.size() - 1]; else if (std::optional LibPathEnv = llvm::sys::Process::GetEnv("HIP_DEVICE_LIB_PATH")) LibDevicePath = std::move(*LibPathEnv); auto &FS = D.getVFS(); if (!LibDevicePath.empty()) { // Maintain compatability with HIP flag/envvar pointing directly at the // bitcode library directory. This points directly at the library path instead // of the rocm root installation. if (!FS.exists(LibDevicePath)) return; scanLibDevicePath(LibDevicePath); HasDeviceLibrary = allGenericLibsValid() && !LibDeviceMap.empty(); return; } // Check device library exists at the given path. auto CheckDeviceLib = [&](StringRef Path, bool StrictChecking) { bool CheckLibDevice = (!NoBuiltinLibs || StrictChecking); if (CheckLibDevice && !FS.exists(Path)) return false; scanLibDevicePath(Path); if (!NoBuiltinLibs) { // Check that the required non-target libraries are all available. if (!allGenericLibsValid()) return false; // Check that we have found at least one libdevice that we can link in // if -nobuiltinlib hasn't been specified. if (LibDeviceMap.empty()) return false; } return true; }; // Find device libraries in /lib/clang//lib/amdgcn/bitcode LibDevicePath = D.ResourceDir; llvm::sys::path::append(LibDevicePath, CLANG_INSTALL_LIBDIR_BASENAME, "amdgcn", "bitcode"); HasDeviceLibrary = CheckDeviceLib(LibDevicePath, true); if (HasDeviceLibrary) return; // Find device libraries in a legacy ROCm directory structure // ${ROCM_ROOT}/amdgcn/bitcode/* auto &ROCmDirs = getInstallationPathCandidates(); for (const auto &Candidate : ROCmDirs) { LibDevicePath = Candidate.Path; llvm::sys::path::append(LibDevicePath, "amdgcn", "bitcode"); HasDeviceLibrary = CheckDeviceLib(LibDevicePath, Candidate.StrictChecking); if (HasDeviceLibrary) return; } } void RocmInstallationDetector::detectHIPRuntime() { SmallVector HIPSearchDirs; if (!HIPPathArg.empty()) HIPSearchDirs.emplace_back(HIPPathArg.str()); else if (std::optional HIPPathEnv = llvm::sys::Process::GetEnv("HIP_PATH")) { if (!HIPPathEnv->empty()) HIPSearchDirs.emplace_back(std::move(*HIPPathEnv)); } if (HIPSearchDirs.empty()) HIPSearchDirs.append(getInstallationPathCandidates()); auto &FS = D.getVFS(); for (const auto &Candidate : HIPSearchDirs) { InstallPath = Candidate.Path; if (InstallPath.empty() || !FS.exists(InstallPath)) continue; // HIP runtime built by SPACK is installed to // /hip-- directory. auto SPACKPath = findSPACKPackage(Candidate, "hip"); InstallPath = SPACKPath.empty() ? InstallPath : SPACKPath; BinPath = InstallPath; llvm::sys::path::append(BinPath, "bin"); IncludePath = InstallPath; llvm::sys::path::append(IncludePath, "include"); LibPath = InstallPath; llvm::sys::path::append(LibPath, "lib"); SharePath = InstallPath; llvm::sys::path::append(SharePath, "share"); // Get parent of InstallPath and append "share" SmallString<0> ParentSharePath = llvm::sys::path::parent_path(InstallPath); llvm::sys::path::append(ParentSharePath, "share"); auto Append = [](SmallString<0> &path, const Twine &a, const Twine &b = "", const Twine &c = "", const Twine &d = "") { SmallString<0> newpath = path; llvm::sys::path::append(newpath, a, b, c, d); return newpath; }; // If HIP version file can be found and parsed, use HIP version from there. std::vector> VersionFilePaths = { Append(SharePath, "hip", "version"), InstallPath != D.SysRoot + "/usr/local" ? Append(ParentSharePath, "hip", "version") : SmallString<0>(), Append(BinPath, ".hipVersion")}; for (const auto &VersionFilePath : VersionFilePaths) { if (VersionFilePath.empty()) continue; llvm::ErrorOr> VersionFile = FS.getBufferForFile(VersionFilePath); if (!VersionFile) continue; if (HIPVersionArg.empty() && VersionFile) if (parseHIPVersionFile((*VersionFile)->getBuffer())) continue; HasHIPRuntime = true; return; } // Otherwise, if -rocm-path is specified (no strict checking), use the // default HIP version or specified by --hip-version. if (!Candidate.StrictChecking) { HasHIPRuntime = true; return; } } HasHIPRuntime = false; } void RocmInstallationDetector::print(raw_ostream &OS) const { if (hasHIPRuntime()) OS << "Found HIP installation: " << InstallPath << ", version " << DetectedVersion << '\n'; } void RocmInstallationDetector::AddHIPIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { bool UsesRuntimeWrapper = VersionMajorMinor > llvm::VersionTuple(3, 5) && !DriverArgs.hasArg(options::OPT_nohipwrapperinc); bool HasHipStdPar = DriverArgs.hasArg(options::OPT_hipstdpar); if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { // HIP header includes standard library wrapper headers under clang // cuda_wrappers directory. Since these wrapper headers include_next // standard C++ headers, whereas libc++ headers include_next other clang // headers. The include paths have to follow this order: // - wrapper include path // - standard C++ include path // - other clang include path // Since standard C++ and other clang include paths are added in other // places after this function, here we only need to make sure wrapper // include path is added. // // ROCm 3.5 does not fully support the wrapper headers. Therefore it needs // a workaround. SmallString<128> P(D.ResourceDir); if (UsesRuntimeWrapper) llvm::sys::path::append(P, "include", "cuda_wrappers"); CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(P)); } const auto HandleHipStdPar = [=, &DriverArgs, &CC1Args]() { StringRef Inc = getIncludePath(); auto &FS = D.getVFS(); if (!hasHIPStdParLibrary()) if (!HIPStdParPathArg.empty() || !FS.exists(Inc + "/thrust/system/hip/hipstdpar/hipstdpar_lib.hpp")) { D.Diag(diag::err_drv_no_hipstdpar_lib); return; } if (!HasRocThrustLibrary && !FS.exists(Inc + "/thrust")) { D.Diag(diag::err_drv_no_hipstdpar_thrust_lib); return; } if (!HasRocPrimLibrary && !FS.exists(Inc + "/rocprim")) { D.Diag(diag::err_drv_no_hipstdpar_prim_lib); return; } const char *ThrustPath; if (HasRocThrustLibrary) ThrustPath = DriverArgs.MakeArgString(HIPRocThrustPathArg); else ThrustPath = DriverArgs.MakeArgString(Inc + "/thrust"); const char *HIPStdParPath; if (hasHIPStdParLibrary()) HIPStdParPath = DriverArgs.MakeArgString(HIPStdParPathArg); else HIPStdParPath = DriverArgs.MakeArgString(StringRef(ThrustPath) + "/system/hip/hipstdpar"); const char *PrimPath; if (HasRocPrimLibrary) PrimPath = DriverArgs.MakeArgString(HIPRocPrimPathArg); else PrimPath = DriverArgs.MakeArgString(getIncludePath() + "/rocprim"); CC1Args.append({"-idirafter", ThrustPath, "-idirafter", PrimPath, "-idirafter", HIPStdParPath, "-include", "hipstdpar_lib.hpp"}); }; if (DriverArgs.hasArg(options::OPT_nogpuinc)) { if (HasHipStdPar) HandleHipStdPar(); return; } if (!hasHIPRuntime()) { D.Diag(diag::err_drv_no_hip_runtime); return; } CC1Args.push_back("-idirafter"); CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath())); if (UsesRuntimeWrapper) CC1Args.append({"-include", "__clang_hip_runtime_wrapper.h"}); if (HasHipStdPar) HandleHipStdPar(); } void amdgpu::Linker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { std::string Linker = getToolChain().GetLinkerPath(); ArgStringList CmdArgs; CmdArgs.push_back("--no-undefined"); CmdArgs.push_back("-shared"); addLinkerCompressDebugSectionsOption(getToolChain(), Args, CmdArgs); Args.AddAllArgs(CmdArgs, options::OPT_L); getToolChain().AddFilePathLibArgs(Args, CmdArgs); AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs, JA); if (C.getDriver().isUsingLTO()) addLTOOptions(getToolChain(), Args, CmdArgs, Output, Inputs[0], C.getDriver().getLTOMode() == LTOK_Thin); else if (Args.hasArg(options::OPT_mcpu_EQ)) CmdArgs.push_back(Args.MakeArgString( "-plugin-opt=mcpu=" + Args.getLastArgValue(options::OPT_mcpu_EQ))); CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); C.addCommand(std::make_unique( JA, *this, ResponseFileSupport::AtFileCurCP(), Args.MakeArgString(Linker), CmdArgs, Inputs, Output)); } void amdgpu::getAMDGPUTargetFeatures(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args, std::vector &Features) { // Add target ID features to -target-feature options. No diagnostics should // be emitted here since invalid target ID is diagnosed at other places. StringRef TargetID; if (Args.hasArg(options::OPT_mcpu_EQ)) TargetID = Args.getLastArgValue(options::OPT_mcpu_EQ); else if (Args.hasArg(options::OPT_march_EQ)) TargetID = Args.getLastArgValue(options::OPT_march_EQ); if (!TargetID.empty()) { llvm::StringMap FeatureMap; auto OptionalGpuArch = parseTargetID(Triple, TargetID, &FeatureMap); if (OptionalGpuArch) { StringRef GpuArch = *OptionalGpuArch; // Iterate through all possible target ID features for the given GPU. // If it is mapped to true, add +feature. // If it is mapped to false, add -feature. // If it is not in the map (default), do not add it for (auto &&Feature : getAllPossibleTargetIDFeatures(Triple, GpuArch)) { auto Pos = FeatureMap.find(Feature); if (Pos == FeatureMap.end()) continue; Features.push_back(Args.MakeArgStringRef( (Twine(Pos->second ? "+" : "-") + Feature).str())); } } } if (Args.hasFlag(options::OPT_mwavefrontsize64, options::OPT_mno_wavefrontsize64, false)) Features.push_back("+wavefrontsize64"); if (Args.hasFlag(options::OPT_mamdgpu_precise_memory_op, options::OPT_mno_amdgpu_precise_memory_op, false)) Features.push_back("+precise-memory"); handleTargetFeaturesGroup(D, Triple, Args, Features, options::OPT_m_amdgpu_Features_Group); } /// AMDGPU Toolchain AMDGPUToolChain::AMDGPUToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args), OptionsDefault( {{options::OPT_O, "3"}, {options::OPT_cl_std_EQ, "CL1.2"}}) { // Check code object version options. Emit warnings for legacy options // and errors for the last invalid code object version options. // It is done here to avoid repeated warning or error messages for // each tool invocation. checkAMDGPUCodeObjectVersion(D, Args); } Tool *AMDGPUToolChain::buildLinker() const { return new tools::amdgpu::Linker(*this); } DerivedArgList * AMDGPUToolChain::TranslateArgs(const DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = Generic_ELF::TranslateArgs(Args, BoundArch, DeviceOffloadKind); const OptTable &Opts = getDriver().getOpts(); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); for (Arg *A : Args) DAL->append(A); // Replace -mcpu=native with detected GPU. Arg *LastMCPUArg = DAL->getLastArg(options::OPT_mcpu_EQ); if (LastMCPUArg && StringRef(LastMCPUArg->getValue()) == "native") { DAL->eraseArg(options::OPT_mcpu_EQ); auto GPUsOrErr = getSystemGPUArchs(Args); if (!GPUsOrErr) { getDriver().Diag(diag::err_drv_undetermined_gpu_arch) << llvm::Triple::getArchTypeName(getArch()) << llvm::toString(GPUsOrErr.takeError()) << "-mcpu"; } else { auto &GPUs = *GPUsOrErr; if (GPUs.size() > 1) { getDriver().Diag(diag::warn_drv_multi_gpu_arch) << llvm::Triple::getArchTypeName(getArch()) << llvm::join(GPUs, ", ") << "-mcpu"; } DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_mcpu_EQ), Args.MakeArgString(GPUs.front())); } } checkTargetID(*DAL); if (Args.getLastArgValue(options::OPT_x) != "cl") return DAL; // Phase 1 (.cl -> .bc) if (Args.hasArg(options::OPT_c) && Args.hasArg(options::OPT_emit_llvm)) { DAL->AddFlagArg(nullptr, Opts.getOption(getTriple().isArch64Bit() ? options::OPT_m64 : options::OPT_m32)); // Have to check OPT_O4, OPT_O0 & OPT_Ofast separately // as they defined that way in Options.td if (!Args.hasArg(options::OPT_O, options::OPT_O0, options::OPT_O4, options::OPT_Ofast)) DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_O), getOptionDefault(options::OPT_O)); } return DAL; } bool AMDGPUToolChain::getDefaultDenormsAreZeroForTarget( llvm::AMDGPU::GPUKind Kind) { // Assume nothing without a specific target. if (Kind == llvm::AMDGPU::GK_NONE) return false; const unsigned ArchAttr = llvm::AMDGPU::getArchAttrAMDGCN(Kind); // Default to enabling f32 denormals by default on subtargets where fma is // fast with denormals const bool BothDenormAndFMAFast = (ArchAttr & llvm::AMDGPU::FEATURE_FAST_FMA_F32) && (ArchAttr & llvm::AMDGPU::FEATURE_FAST_DENORMAL_F32); return !BothDenormAndFMAFast; } llvm::DenormalMode AMDGPUToolChain::getDefaultDenormalModeForType( const llvm::opt::ArgList &DriverArgs, const JobAction &JA, const llvm::fltSemantics *FPType) const { // Denormals should always be enabled for f16 and f64. if (!FPType || FPType != &llvm::APFloat::IEEEsingle()) return llvm::DenormalMode::getIEEE(); if (JA.getOffloadingDeviceKind() == Action::OFK_HIP || JA.getOffloadingDeviceKind() == Action::OFK_Cuda) { auto Arch = getProcessorFromTargetID(getTriple(), JA.getOffloadingArch()); auto Kind = llvm::AMDGPU::parseArchAMDGCN(Arch); if (FPType && FPType == &llvm::APFloat::IEEEsingle() && DriverArgs.hasFlag(options::OPT_fgpu_flush_denormals_to_zero, options::OPT_fno_gpu_flush_denormals_to_zero, getDefaultDenormsAreZeroForTarget(Kind))) return llvm::DenormalMode::getPreserveSign(); return llvm::DenormalMode::getIEEE(); } const StringRef GpuArch = getGPUArch(DriverArgs); auto Kind = llvm::AMDGPU::parseArchAMDGCN(GpuArch); // TODO: There are way too many flags that change this. Do we need to check // them all? bool DAZ = DriverArgs.hasArg(options::OPT_cl_denorms_are_zero) || getDefaultDenormsAreZeroForTarget(Kind); // Outputs are flushed to zero (FTZ), preserving sign. Denormal inputs are // also implicit treated as zero (DAZ). return DAZ ? llvm::DenormalMode::getPreserveSign() : llvm::DenormalMode::getIEEE(); } bool AMDGPUToolChain::isWave64(const llvm::opt::ArgList &DriverArgs, llvm::AMDGPU::GPUKind Kind) { const unsigned ArchAttr = llvm::AMDGPU::getArchAttrAMDGCN(Kind); bool HasWave32 = (ArchAttr & llvm::AMDGPU::FEATURE_WAVE32); return !HasWave32 || DriverArgs.hasFlag( options::OPT_mwavefrontsize64, options::OPT_mno_wavefrontsize64, false); } /// ROCM Toolchain ROCMToolChain::ROCMToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : AMDGPUToolChain(D, Triple, Args) { RocmInstallation->detectDeviceLibrary(); } void AMDGPUToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { // Default to "hidden" visibility, as object level linking will not be // supported for the foreseeable future. if (!DriverArgs.hasArg(options::OPT_fvisibility_EQ, options::OPT_fvisibility_ms_compat)) { CC1Args.push_back("-fvisibility=hidden"); CC1Args.push_back("-fapply-global-visibility-to-externs"); } } void AMDGPUToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { // AMDGPU does not support atomic lib call. Treat atomic alignment // warnings as errors. CC1Args.push_back("-Werror=atomic-alignment"); } StringRef AMDGPUToolChain::getGPUArch(const llvm::opt::ArgList &DriverArgs) const { return getProcessorFromTargetID( getTriple(), DriverArgs.getLastArgValue(options::OPT_mcpu_EQ)); } AMDGPUToolChain::ParsedTargetIDType AMDGPUToolChain::getParsedTargetID(const llvm::opt::ArgList &DriverArgs) const { StringRef TargetID = DriverArgs.getLastArgValue(options::OPT_mcpu_EQ); if (TargetID.empty()) return {std::nullopt, std::nullopt, std::nullopt}; llvm::StringMap FeatureMap; auto OptionalGpuArch = parseTargetID(getTriple(), TargetID, &FeatureMap); if (!OptionalGpuArch) return {TargetID.str(), std::nullopt, std::nullopt}; return {TargetID.str(), OptionalGpuArch->str(), FeatureMap}; } void AMDGPUToolChain::checkTargetID( const llvm::opt::ArgList &DriverArgs) const { auto PTID = getParsedTargetID(DriverArgs); if (PTID.OptionalTargetID && !PTID.OptionalGPUArch) { getDriver().Diag(clang::diag::err_drv_bad_target_id) << *PTID.OptionalTargetID; } } Expected> AMDGPUToolChain::getSystemGPUArchs(const ArgList &Args) const { // Detect AMD GPUs availible on the system. std::string Program; if (Arg *A = Args.getLastArg(options::OPT_amdgpu_arch_tool_EQ)) Program = A->getValue(); else Program = GetProgramPath("amdgpu-arch"); auto StdoutOrErr = executeToolChainProgram(Program, /*SecondsToWait=*/10); if (!StdoutOrErr) return StdoutOrErr.takeError(); SmallVector GPUArchs; for (StringRef Arch : llvm::split((*StdoutOrErr)->getBuffer(), "\n")) if (!Arch.empty()) GPUArchs.push_back(Arch.str()); if (GPUArchs.empty()) return llvm::createStringError(std::error_code(), "No AMD GPU detected in the system"); return std::move(GPUArchs); } void ROCMToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { AMDGPUToolChain::addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); // For the OpenCL case where there is no offload target, accept -nostdlib to // disable bitcode linking. if (DeviceOffloadingKind == Action::OFK_None && DriverArgs.hasArg(options::OPT_nostdlib)) return; if (DriverArgs.hasArg(options::OPT_nogpulib)) return; // Get the device name and canonicalize it const StringRef GpuArch = getGPUArch(DriverArgs); auto Kind = llvm::AMDGPU::parseArchAMDGCN(GpuArch); const StringRef CanonArch = llvm::AMDGPU::getArchNameAMDGCN(Kind); StringRef LibDeviceFile = RocmInstallation->getLibDeviceFile(CanonArch); auto ABIVer = DeviceLibABIVersion::fromCodeObjectVersion( getAMDGPUCodeObjectVersion(getDriver(), DriverArgs)); if (!RocmInstallation->checkCommonBitcodeLibs(CanonArch, LibDeviceFile, ABIVer)) return; bool Wave64 = isWave64(DriverArgs, Kind); // TODO: There are way too many flags that change this. Do we need to check // them all? bool DAZ = DriverArgs.hasArg(options::OPT_cl_denorms_are_zero) || getDefaultDenormsAreZeroForTarget(Kind); bool FiniteOnly = DriverArgs.hasArg(options::OPT_cl_finite_math_only); bool UnsafeMathOpt = DriverArgs.hasArg(options::OPT_cl_unsafe_math_optimizations); bool FastRelaxedMath = DriverArgs.hasArg(options::OPT_cl_fast_relaxed_math); bool CorrectSqrt = DriverArgs.hasArg(options::OPT_cl_fp32_correctly_rounded_divide_sqrt); // Add the OpenCL specific bitcode library. llvm::SmallVector BCLibs; BCLibs.push_back(RocmInstallation->getOpenCLPath().str()); // Add the generic set of libraries. BCLibs.append(RocmInstallation->getCommonBitcodeLibs( DriverArgs, LibDeviceFile, Wave64, DAZ, FiniteOnly, UnsafeMathOpt, FastRelaxedMath, CorrectSqrt, ABIVer, false)); if (getSanitizerArgs(DriverArgs).needsAsanRt()) { CC1Args.push_back("-mlink-bitcode-file"); CC1Args.push_back( DriverArgs.MakeArgString(RocmInstallation->getAsanRTLPath())); } for (StringRef BCFile : BCLibs) { CC1Args.push_back("-mlink-builtin-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(BCFile)); } } bool RocmInstallationDetector::checkCommonBitcodeLibs( StringRef GPUArch, StringRef LibDeviceFile, DeviceLibABIVersion ABIVer) const { if (!hasDeviceLibrary()) { D.Diag(diag::err_drv_no_rocm_device_lib) << 0; return false; } if (LibDeviceFile.empty()) { D.Diag(diag::err_drv_no_rocm_device_lib) << 1 << GPUArch; return false; } if (ABIVer.requiresLibrary() && getABIVersionPath(ABIVer).empty()) { D.Diag(diag::err_drv_no_rocm_device_lib) << 2 << ABIVer.toString(); return false; } return true; } llvm::SmallVector RocmInstallationDetector::getCommonBitcodeLibs( const llvm::opt::ArgList &DriverArgs, StringRef LibDeviceFile, bool Wave64, bool DAZ, bool FiniteOnly, bool UnsafeMathOpt, bool FastRelaxedMath, bool CorrectSqrt, DeviceLibABIVersion ABIVer, bool isOpenMP = false) const { llvm::SmallVector BCLibs; auto AddBCLib = [&](StringRef BCFile) { BCLibs.push_back(BCFile.str()); }; AddBCLib(getOCMLPath()); if (!isOpenMP) AddBCLib(getOCKLPath()); AddBCLib(getDenormalsAreZeroPath(DAZ)); AddBCLib(getUnsafeMathPath(UnsafeMathOpt || FastRelaxedMath)); AddBCLib(getFiniteOnlyPath(FiniteOnly || FastRelaxedMath)); AddBCLib(getCorrectlyRoundedSqrtPath(CorrectSqrt)); AddBCLib(getWavefrontSize64Path(Wave64)); AddBCLib(LibDeviceFile); auto ABIVerPath = getABIVersionPath(ABIVer); if (!ABIVerPath.empty()) AddBCLib(ABIVerPath); return BCLibs; } llvm::SmallVector ROCMToolChain::getCommonDeviceLibNames(const llvm::opt::ArgList &DriverArgs, const std::string &GPUArch, bool isOpenMP) const { auto Kind = llvm::AMDGPU::parseArchAMDGCN(GPUArch); const StringRef CanonArch = llvm::AMDGPU::getArchNameAMDGCN(Kind); StringRef LibDeviceFile = RocmInstallation->getLibDeviceFile(CanonArch); auto ABIVer = DeviceLibABIVersion::fromCodeObjectVersion( getAMDGPUCodeObjectVersion(getDriver(), DriverArgs)); if (!RocmInstallation->checkCommonBitcodeLibs(CanonArch, LibDeviceFile, ABIVer)) return {}; // If --hip-device-lib is not set, add the default bitcode libraries. // TODO: There are way too many flags that change this. Do we need to check // them all? bool DAZ = DriverArgs.hasFlag(options::OPT_fgpu_flush_denormals_to_zero, options::OPT_fno_gpu_flush_denormals_to_zero, getDefaultDenormsAreZeroForTarget(Kind)); bool FiniteOnly = DriverArgs.hasFlag( options::OPT_ffinite_math_only, options::OPT_fno_finite_math_only, false); bool UnsafeMathOpt = DriverArgs.hasFlag(options::OPT_funsafe_math_optimizations, options::OPT_fno_unsafe_math_optimizations, false); bool FastRelaxedMath = DriverArgs.hasFlag(options::OPT_ffast_math, options::OPT_fno_fast_math, false); bool CorrectSqrt = DriverArgs.hasFlag( options::OPT_fhip_fp32_correctly_rounded_divide_sqrt, options::OPT_fno_hip_fp32_correctly_rounded_divide_sqrt, true); bool Wave64 = isWave64(DriverArgs, Kind); return RocmInstallation->getCommonBitcodeLibs( DriverArgs, LibDeviceFile, Wave64, DAZ, FiniteOnly, UnsafeMathOpt, FastRelaxedMath, CorrectSqrt, ABIVer, isOpenMP); }