//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These classes implement wrappers around llvm::Value in order to // fully represent the range of values for C L- and R- values. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H #include "Address.h" #include "CGPointerAuthInfo.h" #include "CodeGenTBAA.h" #include "EHScopeStack.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Type.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" namespace llvm { class Constant; class MDNode; } namespace clang { namespace CodeGen { class AggValueSlot; class CGBuilderTy; class CodeGenFunction; struct CGBitFieldInfo; /// RValue - This trivial value class is used to represent the result of an /// expression that is evaluated. It can be one of three things: either a /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the /// address of an aggregate value in memory. class RValue { friend struct DominatingValue; enum FlavorEnum { Scalar, Complex, Aggregate }; union { // Stores first and second value. struct { llvm::Value *first; llvm::Value *second; } Vals; // Stores aggregate address. Address AggregateAddr; }; unsigned IsVolatile : 1; unsigned Flavor : 2; public: RValue() : Vals{nullptr, nullptr}, Flavor(Scalar) {} bool isScalar() const { return Flavor == Scalar; } bool isComplex() const { return Flavor == Complex; } bool isAggregate() const { return Flavor == Aggregate; } bool isVolatileQualified() const { return IsVolatile; } /// getScalarVal() - Return the Value* of this scalar value. llvm::Value *getScalarVal() const { assert(isScalar() && "Not a scalar!"); return Vals.first; } /// getComplexVal - Return the real/imag components of this complex value. /// std::pair getComplexVal() const { return std::make_pair(Vals.first, Vals.second); } /// getAggregateAddr() - Return the Value* of the address of the aggregate. Address getAggregateAddress() const { assert(isAggregate() && "Not an aggregate!"); return AggregateAddr; } llvm::Value *getAggregatePointer(QualType PointeeType, CodeGenFunction &CGF) const { return getAggregateAddress().getBasePointer(); } static RValue getIgnored() { // FIXME: should we make this a more explicit state? return get(nullptr); } static RValue get(llvm::Value *V) { RValue ER; ER.Vals.first = V; ER.Flavor = Scalar; ER.IsVolatile = false; return ER; } static RValue get(Address Addr, CodeGenFunction &CGF) { return RValue::get(Addr.emitRawPointer(CGF)); } static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { RValue ER; ER.Vals = {V1, V2}; ER.Flavor = Complex; ER.IsVolatile = false; return ER; } static RValue getComplex(const std::pair &C) { return getComplex(C.first, C.second); } // FIXME: Aggregate rvalues need to retain information about whether they are // volatile or not. Remove default to find all places that probably get this // wrong. /// Convert an Address to an RValue. If the Address is not /// signed, create an RValue using the unsigned address. Otherwise, resign the /// address using the provided type. static RValue getAggregate(Address addr, bool isVolatile = false) { RValue ER; ER.AggregateAddr = addr; ER.Flavor = Aggregate; ER.IsVolatile = isVolatile; return ER; } }; /// Does an ARC strong l-value have precise lifetime? enum ARCPreciseLifetime_t { ARCImpreciseLifetime, ARCPreciseLifetime }; /// The source of the alignment of an l-value; an expression of /// confidence in the alignment actually matching the estimate. enum class AlignmentSource { /// The l-value was an access to a declared entity or something /// equivalently strong, like the address of an array allocated by a /// language runtime. Decl, /// The l-value was considered opaque, so the alignment was /// determined from a type, but that type was an explicitly-aligned /// typedef. AttributedType, /// The l-value was considered opaque, so the alignment was /// determined from a type. Type }; /// Given that the base address has the given alignment source, what's /// our confidence in the alignment of the field? static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { // For now, we don't distinguish fields of opaque pointers from // top-level declarations, but maybe we should. return AlignmentSource::Decl; } class LValueBaseInfo { AlignmentSource AlignSource; public: explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) : AlignSource(Source) {} AlignmentSource getAlignmentSource() const { return AlignSource; } void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } void mergeForCast(const LValueBaseInfo &Info) { setAlignmentSource(Info.getAlignmentSource()); } }; /// LValue - This represents an lvalue references. Because C/C++ allow /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a /// bitrange. class LValue { enum { Simple, // This is a normal l-value, use getAddress(). VectorElt, // This is a vector element l-value (V[i]), use getVector* BitField, // This is a bitfield l-value, use getBitfield*. ExtVectorElt, // This is an extended vector subset, use getExtVectorComp GlobalReg, // This is a register l-value, use getGlobalReg() MatrixElt // This is a matrix element, use getVector* } LVType; union { Address Addr = Address::invalid(); llvm::Value *V; }; union { // Index into a vector subscript: V[i] llvm::Value *VectorIdx; // ExtVector element subset: V.xyx llvm::Constant *VectorElts; // BitField start bit and size const CGBitFieldInfo *BitFieldInfo; }; QualType Type; // 'const' is unused here Qualifiers Quals; // objective-c's ivar bool Ivar:1; // objective-c's ivar is an array bool ObjIsArray:1; // LValue is non-gc'able for any reason, including being a parameter or local // variable. bool NonGC: 1; // Lvalue is a global reference of an objective-c object bool GlobalObjCRef : 1; // Lvalue is a thread local reference bool ThreadLocalRef : 1; // Lvalue has ARC imprecise lifetime. We store this inverted to try // to make the default bitfield pattern all-zeroes. bool ImpreciseLifetime : 1; // This flag shows if a nontemporal load/stores should be used when accessing // this lvalue. bool Nontemporal : 1; LValueBaseInfo BaseInfo; TBAAAccessInfo TBAAInfo; Expr *BaseIvarExp; private: void Initialize(QualType Type, Qualifiers Quals, Address Addr, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { this->Type = Type; this->Quals = Quals; const unsigned MaxAlign = 1U << 31; CharUnits Alignment = Addr.getAlignment(); assert((isGlobalReg() || !Alignment.isZero() || Type->isIncompleteType()) && "initializing l-value with zero alignment!"); if (Alignment.getQuantity() > MaxAlign) { assert(false && "Alignment exceeds allowed max!"); Alignment = CharUnits::fromQuantity(MaxAlign); } this->Addr = Addr; this->BaseInfo = BaseInfo; this->TBAAInfo = TBAAInfo; // Initialize Objective-C flags. this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; this->ImpreciseLifetime = false; this->Nontemporal = false; this->ThreadLocalRef = false; this->BaseIvarExp = nullptr; } void initializeSimpleLValue(Address Addr, QualType Type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, ASTContext &Context) { Qualifiers QS = Type.getQualifiers(); QS.setObjCGCAttr(Context.getObjCGCAttrKind(Type)); LVType = Simple; Initialize(Type, QS, Addr, BaseInfo, TBAAInfo); assert(Addr.getBasePointer()->getType()->isPointerTy()); } public: bool isSimple() const { return LVType == Simple; } bool isVectorElt() const { return LVType == VectorElt; } bool isBitField() const { return LVType == BitField; } bool isExtVectorElt() const { return LVType == ExtVectorElt; } bool isGlobalReg() const { return LVType == GlobalReg; } bool isMatrixElt() const { return LVType == MatrixElt; } bool isVolatileQualified() const { return Quals.hasVolatile(); } bool isRestrictQualified() const { return Quals.hasRestrict(); } unsigned getVRQualifiers() const { return Quals.getCVRQualifiers() & ~Qualifiers::Const; } QualType getType() const { return Type; } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } bool isObjCIvar() const { return Ivar; } void setObjCIvar(bool Value) { Ivar = Value; } bool isObjCArray() const { return ObjIsArray; } void setObjCArray(bool Value) { ObjIsArray = Value; } bool isNonGC () const { return NonGC; } void setNonGC(bool Value) { NonGC = Value; } bool isGlobalObjCRef() const { return GlobalObjCRef; } void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } bool isThreadLocalRef() const { return ThreadLocalRef; } void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} ARCPreciseLifetime_t isARCPreciseLifetime() const { return ARCPreciseLifetime_t(!ImpreciseLifetime); } void setARCPreciseLifetime(ARCPreciseLifetime_t value) { ImpreciseLifetime = (value == ARCImpreciseLifetime); } bool isNontemporal() const { return Nontemporal; } void setNontemporal(bool Value) { Nontemporal = Value; } bool isObjCWeak() const { return Quals.getObjCGCAttr() == Qualifiers::Weak; } bool isObjCStrong() const { return Quals.getObjCGCAttr() == Qualifiers::Strong; } bool isVolatile() const { return Quals.hasVolatile(); } Expr *getBaseIvarExp() const { return BaseIvarExp; } void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } const Qualifiers &getQuals() const { return Quals; } Qualifiers &getQuals() { return Quals; } LangAS getAddressSpace() const { return Quals.getAddressSpace(); } CharUnits getAlignment() const { return Addr.getAlignment(); } void setAlignment(CharUnits A) { Addr.setAlignment(A); } LValueBaseInfo getBaseInfo() const { return BaseInfo; } void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } KnownNonNull_t isKnownNonNull() const { return Addr.isKnownNonNull(); } LValue setKnownNonNull() { Addr.setKnownNonNull(); return *this; } // simple lvalue llvm::Value *getPointer(CodeGenFunction &CGF) const; llvm::Value *emitResignedPointer(QualType PointeeTy, CodeGenFunction &CGF) const; llvm::Value *emitRawPointer(CodeGenFunction &CGF) const; Address getAddress() const { return Addr; } void setAddress(Address address) { Addr = address; } CGPointerAuthInfo getPointerAuthInfo() const { return Addr.getPointerAuthInfo(); } // vector elt lvalue Address getVectorAddress() const { assert(isVectorElt()); return Addr; } llvm::Value *getRawVectorPointer(CodeGenFunction &CGF) const { assert(isVectorElt()); return Addr.emitRawPointer(CGF); } llvm::Value *getVectorPointer() const { assert(isVectorElt()); return Addr.getBasePointer(); } llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } Address getMatrixAddress() const { assert(isMatrixElt()); return Addr; } llvm::Value *getMatrixPointer() const { assert(isMatrixElt()); return Addr.getBasePointer(); } llvm::Value *getMatrixIdx() const { assert(isMatrixElt()); return VectorIdx; } // extended vector elements. Address getExtVectorAddress() const { assert(isExtVectorElt()); return Addr; } llvm::Value *getRawExtVectorPointer(CodeGenFunction &CGF) const { assert(isExtVectorElt()); return Addr.emitRawPointer(CGF); } llvm::Constant *getExtVectorElts() const { assert(isExtVectorElt()); return VectorElts; } // bitfield lvalue Address getBitFieldAddress() const { assert(isBitField()); return Addr; } llvm::Value *getRawBitFieldPointer(CodeGenFunction &CGF) const { assert(isBitField()); return Addr.emitRawPointer(CGF); } const CGBitFieldInfo &getBitFieldInfo() const { assert(isBitField()); return *BitFieldInfo; } // global register lvalue llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } static LValue MakeAddr(Address Addr, QualType type, ASTContext &Context, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = Simple; R.initializeSimpleLValue(Addr, type, BaseInfo, TBAAInfo, Context); R.Addr = Addr; assert(Addr.getType()->isPointerTy()); return R; } static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = VectorElt; R.VectorIdx = Idx; R.Initialize(type, type.getQualifiers(), vecAddress, BaseInfo, TBAAInfo); return R; } static LValue MakeExtVectorElt(Address Addr, llvm::Constant *Elts, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = ExtVectorElt; R.VectorElts = Elts; R.Initialize(type, type.getQualifiers(), Addr, BaseInfo, TBAAInfo); return R; } /// Create a new object to represent a bit-field access. /// /// \param Addr - The base address of the bit-field sequence this /// bit-field refers to. /// \param Info - The information describing how to perform the bit-field /// access. static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = BitField; R.BitFieldInfo = &Info; R.Initialize(type, type.getQualifiers(), Addr, BaseInfo, TBAAInfo); return R; } static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment, QualType type) { LValue R; R.LVType = GlobalReg; R.Initialize(type, type.getQualifiers(), Address::invalid(), LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); R.V = V; return R; } static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = MatrixElt; R.VectorIdx = Idx; R.Initialize(type, type.getQualifiers(), matAddress, BaseInfo, TBAAInfo); return R; } RValue asAggregateRValue() const { return RValue::getAggregate(getAddress(), isVolatileQualified()); } }; /// An aggregate value slot. class AggValueSlot { /// The address. Address Addr; // Qualifiers Qualifiers Quals; /// DestructedFlag - This is set to true if some external code is /// responsible for setting up a destructor for the slot. Otherwise /// the code which constructs it should push the appropriate cleanup. bool DestructedFlag : 1; /// ObjCGCFlag - This is set to true if writing to the memory in the /// slot might require calling an appropriate Objective-C GC /// barrier. The exact interaction here is unnecessarily mysterious. bool ObjCGCFlag : 1; /// ZeroedFlag - This is set to true if the memory in the slot is /// known to be zero before the assignment into it. This means that /// zero fields don't need to be set. bool ZeroedFlag : 1; /// AliasedFlag - This is set to true if the slot might be aliased /// and it's not undefined behavior to access it through such an /// alias. Note that it's always undefined behavior to access a C++ /// object that's under construction through an alias derived from /// outside the construction process. /// /// This flag controls whether calls that produce the aggregate /// value may be evaluated directly into the slot, or whether they /// must be evaluated into an unaliased temporary and then memcpy'ed /// over. Since it's invalid in general to memcpy a non-POD C++ /// object, it's important that this flag never be set when /// evaluating an expression which constructs such an object. bool AliasedFlag : 1; /// This is set to true if the tail padding of this slot might overlap /// another object that may have already been initialized (and whose /// value must be preserved by this initialization). If so, we may only /// store up to the dsize of the type. Otherwise we can widen stores to /// the size of the type. bool OverlapFlag : 1; /// If is set to true, sanitizer checks are already generated for this address /// or not required. For instance, if this address represents an object /// created in 'new' expression, sanitizer checks for memory is made as a part /// of 'operator new' emission and object constructor should not generate /// them. bool SanitizerCheckedFlag : 1; AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag, bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag, bool OverlapFlag, bool SanitizerCheckedFlag) : Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag), ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag), AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag), SanitizerCheckedFlag(SanitizerCheckedFlag) {} public: enum IsAliased_t { IsNotAliased, IsAliased }; enum IsDestructed_t { IsNotDestructed, IsDestructed }; enum IsZeroed_t { IsNotZeroed, IsZeroed }; enum Overlap_t { DoesNotOverlap, MayOverlap }; enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; /// ignored - Returns an aggregate value slot indicating that the /// aggregate value is being ignored. static AggValueSlot ignored() { return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); } /// forAddr - Make a slot for an aggregate value. /// /// \param quals - The qualifiers that dictate how the slot should /// be initialied. Only 'volatile' and the Objective-C lifetime /// qualifiers matter. /// /// \param isDestructed - true if something else is responsible /// for calling destructors on this object /// \param needsGC - true if the slot is potentially located /// somewhere that ObjC GC calls should be emitted for static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { if (addr.isValid()) addr.setKnownNonNull(); return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased, mayOverlap, isChecked); } static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, needsGC, isAliased, mayOverlap, isZeroed, isChecked); } IsDestructed_t isExternallyDestructed() const { return IsDestructed_t(DestructedFlag); } void setExternallyDestructed(bool destructed = true) { DestructedFlag = destructed; } Qualifiers getQualifiers() const { return Quals; } bool isVolatile() const { return Quals.hasVolatile(); } void setVolatile(bool flag) { if (flag) Quals.addVolatile(); else Quals.removeVolatile(); } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } NeedsGCBarriers_t requiresGCollection() const { return NeedsGCBarriers_t(ObjCGCFlag); } llvm::Value *getPointer(QualType PointeeTy, CodeGenFunction &CGF) const; llvm::Value *emitRawPointer(CodeGenFunction &CGF) const { return Addr.isValid() ? Addr.emitRawPointer(CGF) : nullptr; } Address getAddress() const { return Addr; } bool isIgnored() const { return !Addr.isValid(); } CharUnits getAlignment() const { return Addr.getAlignment(); } IsAliased_t isPotentiallyAliased() const { return IsAliased_t(AliasedFlag); } Overlap_t mayOverlap() const { return Overlap_t(OverlapFlag); } bool isSanitizerChecked() const { return SanitizerCheckedFlag; } RValue asRValue() const { if (isIgnored()) { return RValue::getIgnored(); } else { return RValue::getAggregate(getAddress(), isVolatile()); } } void setZeroed(bool V = true) { ZeroedFlag = V; } IsZeroed_t isZeroed() const { return IsZeroed_t(ZeroedFlag); } /// Get the preferred size to use when storing a value to this slot. This /// is the type size unless that might overlap another object, in which /// case it's the dsize. CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width : Ctx.getTypeSizeInChars(Type); } }; } // end namespace CodeGen } // end namespace clang #endif