//===- Module.cpp - Describe a module -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the Module class, which describes a module in the source // code. // //===----------------------------------------------------------------------===// #include "clang/Basic/Module.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace clang; Module::Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent, bool IsFramework, bool IsExplicit, unsigned VisibilityID) : Name(Name), DefinitionLoc(DefinitionLoc), Parent(Parent), VisibilityID(VisibilityID), IsUnimportable(false), HasIncompatibleModuleFile(false), IsAvailable(true), IsFromModuleFile(false), IsFramework(IsFramework), IsExplicit(IsExplicit), IsSystem(false), IsExternC(false), IsInferred(false), InferSubmodules(false), InferExplicitSubmodules(false), InferExportWildcard(false), ConfigMacrosExhaustive(false), NoUndeclaredIncludes(false), ModuleMapIsPrivate(false), NamedModuleHasInit(true), NameVisibility(Hidden) { if (Parent) { IsAvailable = Parent->isAvailable(); IsUnimportable = Parent->isUnimportable(); IsSystem = Parent->IsSystem; IsExternC = Parent->IsExternC; NoUndeclaredIncludes = Parent->NoUndeclaredIncludes; ModuleMapIsPrivate = Parent->ModuleMapIsPrivate; Parent->SubModuleIndex[Name] = Parent->SubModules.size(); Parent->SubModules.push_back(this); } } Module::~Module() { for (auto *Submodule : SubModules) { delete Submodule; } } static bool isPlatformEnvironment(const TargetInfo &Target, StringRef Feature) { StringRef Platform = Target.getPlatformName(); StringRef Env = Target.getTriple().getEnvironmentName(); // Attempt to match platform and environment. if (Platform == Feature || Target.getTriple().getOSName() == Feature || Env == Feature) return true; auto CmpPlatformEnv = [](StringRef LHS, StringRef RHS) { auto Pos = LHS.find('-'); if (Pos == StringRef::npos) return false; SmallString<128> NewLHS = LHS.slice(0, Pos); NewLHS += LHS.slice(Pos+1, LHS.size()); return NewLHS == RHS; }; SmallString<128> PlatformEnv = Target.getTriple().getOSAndEnvironmentName(); // Darwin has different but equivalent variants for simulators, example: // 1. x86_64-apple-ios-simulator // 2. x86_64-apple-iossimulator // where both are valid examples of the same platform+environment but in the // variant (2) the simulator is hardcoded as part of the platform name. Both // forms above should match for "iossimulator" requirement. if (Target.getTriple().isOSDarwin() && PlatformEnv.ends_with("simulator")) return PlatformEnv == Feature || CmpPlatformEnv(PlatformEnv, Feature); return PlatformEnv == Feature; } /// Determine whether a translation unit built using the current /// language options has the given feature. static bool hasFeature(StringRef Feature, const LangOptions &LangOpts, const TargetInfo &Target) { bool HasFeature = llvm::StringSwitch(Feature) .Case("altivec", LangOpts.AltiVec) .Case("blocks", LangOpts.Blocks) .Case("coroutines", LangOpts.Coroutines) .Case("cplusplus", LangOpts.CPlusPlus) .Case("cplusplus11", LangOpts.CPlusPlus11) .Case("cplusplus14", LangOpts.CPlusPlus14) .Case("cplusplus17", LangOpts.CPlusPlus17) .Case("cplusplus20", LangOpts.CPlusPlus20) .Case("cplusplus23", LangOpts.CPlusPlus23) .Case("cplusplus26", LangOpts.CPlusPlus26) .Case("c99", LangOpts.C99) .Case("c11", LangOpts.C11) .Case("c17", LangOpts.C17) .Case("c23", LangOpts.C23) .Case("freestanding", LangOpts.Freestanding) .Case("gnuinlineasm", LangOpts.GNUAsm) .Case("objc", LangOpts.ObjC) .Case("objc_arc", LangOpts.ObjCAutoRefCount) .Case("opencl", LangOpts.OpenCL) .Case("tls", Target.isTLSSupported()) .Case("zvector", LangOpts.ZVector) .Default(Target.hasFeature(Feature) || isPlatformEnvironment(Target, Feature)); if (!HasFeature) HasFeature = llvm::is_contained(LangOpts.ModuleFeatures, Feature); return HasFeature; } bool Module::isUnimportable(const LangOptions &LangOpts, const TargetInfo &Target, Requirement &Req, Module *&ShadowingModule) const { if (!IsUnimportable) return false; for (const Module *Current = this; Current; Current = Current->Parent) { if (Current->ShadowingModule) { ShadowingModule = Current->ShadowingModule; return true; } for (unsigned I = 0, N = Current->Requirements.size(); I != N; ++I) { if (hasFeature(Current->Requirements[I].FeatureName, LangOpts, Target) != Current->Requirements[I].RequiredState) { Req = Current->Requirements[I]; return true; } } } llvm_unreachable("could not find a reason why module is unimportable"); } // The -fmodule-name option tells the compiler to textually include headers in // the specified module, meaning Clang won't build the specified module. This // is useful in a number of situations, for instance, when building a library // that vends a module map, one might want to avoid hitting intermediate build // products containing the module map or avoid finding the system installed // modulemap for that library. bool Module::isForBuilding(const LangOptions &LangOpts) const { StringRef TopLevelName = getTopLevelModuleName(); StringRef CurrentModule = LangOpts.CurrentModule; // When building the implementation of framework Foo, we want to make sure // that Foo *and* Foo_Private are textually included and no modules are built // for either. if (!LangOpts.isCompilingModule() && getTopLevelModule()->IsFramework && CurrentModule == LangOpts.ModuleName && !CurrentModule.ends_with("_Private") && TopLevelName.ends_with("_Private")) TopLevelName = TopLevelName.drop_back(8); return TopLevelName == CurrentModule; } bool Module::isAvailable(const LangOptions &LangOpts, const TargetInfo &Target, Requirement &Req, UnresolvedHeaderDirective &MissingHeader, Module *&ShadowingModule) const { if (IsAvailable) return true; if (isUnimportable(LangOpts, Target, Req, ShadowingModule)) return false; // FIXME: All missing headers are listed on the top-level module. Should we // just look there? for (const Module *Current = this; Current; Current = Current->Parent) { if (!Current->MissingHeaders.empty()) { MissingHeader = Current->MissingHeaders.front(); return false; } } llvm_unreachable("could not find a reason why module is unavailable"); } bool Module::isSubModuleOf(const Module *Other) const { for (auto *Parent = this; Parent; Parent = Parent->Parent) { if (Parent == Other) return true; } return false; } const Module *Module::getTopLevelModule() const { const Module *Result = this; while (Result->Parent) Result = Result->Parent; return Result; } static StringRef getModuleNameFromComponent( const std::pair &IdComponent) { return IdComponent.first; } static StringRef getModuleNameFromComponent(StringRef R) { return R; } template static void printModuleId(raw_ostream &OS, InputIter Begin, InputIter End, bool AllowStringLiterals = true) { for (InputIter It = Begin; It != End; ++It) { if (It != Begin) OS << "."; StringRef Name = getModuleNameFromComponent(*It); if (!AllowStringLiterals || isValidAsciiIdentifier(Name)) OS << Name; else { OS << '"'; OS.write_escaped(Name); OS << '"'; } } } template static void printModuleId(raw_ostream &OS, const Container &C) { return printModuleId(OS, C.begin(), C.end()); } std::string Module::getFullModuleName(bool AllowStringLiterals) const { SmallVector Names; // Build up the set of module names (from innermost to outermost). for (const Module *M = this; M; M = M->Parent) Names.push_back(M->Name); std::string Result; llvm::raw_string_ostream Out(Result); printModuleId(Out, Names.rbegin(), Names.rend(), AllowStringLiterals); Out.flush(); return Result; } bool Module::fullModuleNameIs(ArrayRef nameParts) const { for (const Module *M = this; M; M = M->Parent) { if (nameParts.empty() || M->Name != nameParts.back()) return false; nameParts = nameParts.drop_back(); } return nameParts.empty(); } OptionalDirectoryEntryRef Module::getEffectiveUmbrellaDir() const { if (const auto *Hdr = std::get_if(&Umbrella)) return Hdr->getDir(); if (const auto *Dir = std::get_if(&Umbrella)) return *Dir; return std::nullopt; } void Module::addTopHeader(FileEntryRef File) { assert(File); TopHeaders.insert(File); } ArrayRef Module::getTopHeaders(FileManager &FileMgr) { if (!TopHeaderNames.empty()) { for (StringRef TopHeaderName : TopHeaderNames) if (auto FE = FileMgr.getOptionalFileRef(TopHeaderName)) TopHeaders.insert(*FE); TopHeaderNames.clear(); } return llvm::ArrayRef(TopHeaders.begin(), TopHeaders.end()); } bool Module::directlyUses(const Module *Requested) { auto *Top = getTopLevelModule(); // A top-level module implicitly uses itself. if (Requested->isSubModuleOf(Top)) return true; for (auto *Use : Top->DirectUses) if (Requested->isSubModuleOf(Use)) return true; // Anyone is allowed to use our builtin stddef.h and its accompanying modules. if (Requested->fullModuleNameIs({"_Builtin_stddef", "max_align_t"}) || Requested->fullModuleNameIs({"_Builtin_stddef_wint_t"})) return true; // Darwin is allowed is to use our builtin 'ptrauth.h' and its accompanying // module. if (!Requested->Parent && Requested->Name == "ptrauth") return true; if (NoUndeclaredIncludes) UndeclaredUses.insert(Requested); return false; } void Module::addRequirement(StringRef Feature, bool RequiredState, const LangOptions &LangOpts, const TargetInfo &Target) { Requirements.push_back(Requirement{std::string(Feature), RequiredState}); // If this feature is currently available, we're done. if (hasFeature(Feature, LangOpts, Target) == RequiredState) return; markUnavailable(/*Unimportable*/true); } void Module::markUnavailable(bool Unimportable) { auto needUpdate = [Unimportable](Module *M) { return M->IsAvailable || (!M->IsUnimportable && Unimportable); }; if (!needUpdate(this)) return; SmallVector Stack; Stack.push_back(this); while (!Stack.empty()) { Module *Current = Stack.back(); Stack.pop_back(); if (!needUpdate(Current)) continue; Current->IsAvailable = false; Current->IsUnimportable |= Unimportable; for (auto *Submodule : Current->submodules()) { if (needUpdate(Submodule)) Stack.push_back(Submodule); } } } Module *Module::findSubmodule(StringRef Name) const { llvm::StringMap::const_iterator Pos = SubModuleIndex.find(Name); if (Pos == SubModuleIndex.end()) return nullptr; return SubModules[Pos->getValue()]; } Module *Module::findOrInferSubmodule(StringRef Name) { llvm::StringMap::const_iterator Pos = SubModuleIndex.find(Name); if (Pos != SubModuleIndex.end()) return SubModules[Pos->getValue()]; if (!InferSubmodules) return nullptr; Module *Result = new Module(Name, SourceLocation(), this, false, InferExplicitSubmodules, 0); Result->InferExplicitSubmodules = InferExplicitSubmodules; Result->InferSubmodules = InferSubmodules; Result->InferExportWildcard = InferExportWildcard; if (Result->InferExportWildcard) Result->Exports.push_back(Module::ExportDecl(nullptr, true)); return Result; } Module *Module::getGlobalModuleFragment() const { assert(isNamedModuleUnit() && "We should only query the global module " "fragment from the C++20 Named modules"); for (auto *SubModule : SubModules) if (SubModule->isExplicitGlobalModule()) return SubModule; return nullptr; } Module *Module::getPrivateModuleFragment() const { assert(isNamedModuleUnit() && "We should only query the private module " "fragment from the C++20 Named modules"); for (auto *SubModule : SubModules) if (SubModule->isPrivateModule()) return SubModule; return nullptr; } void Module::getExportedModules(SmallVectorImpl &Exported) const { // All non-explicit submodules are exported. for (std::vector::const_iterator I = SubModules.begin(), E = SubModules.end(); I != E; ++I) { Module *Mod = *I; if (!Mod->IsExplicit) Exported.push_back(Mod); } // Find re-exported modules by filtering the list of imported modules. bool AnyWildcard = false; bool UnrestrictedWildcard = false; SmallVector WildcardRestrictions; for (unsigned I = 0, N = Exports.size(); I != N; ++I) { Module *Mod = Exports[I].getPointer(); if (!Exports[I].getInt()) { // Export a named module directly; no wildcards involved. Exported.push_back(Mod); continue; } // Wildcard export: export all of the imported modules that match // the given pattern. AnyWildcard = true; if (UnrestrictedWildcard) continue; if (Module *Restriction = Exports[I].getPointer()) WildcardRestrictions.push_back(Restriction); else { WildcardRestrictions.clear(); UnrestrictedWildcard = true; } } // If there were any wildcards, push any imported modules that were // re-exported by the wildcard restriction. if (!AnyWildcard) return; for (unsigned I = 0, N = Imports.size(); I != N; ++I) { Module *Mod = Imports[I]; bool Acceptable = UnrestrictedWildcard; if (!Acceptable) { // Check whether this module meets one of the restrictions. for (unsigned R = 0, NR = WildcardRestrictions.size(); R != NR; ++R) { Module *Restriction = WildcardRestrictions[R]; if (Mod == Restriction || Mod->isSubModuleOf(Restriction)) { Acceptable = true; break; } } } if (!Acceptable) continue; Exported.push_back(Mod); } } void Module::buildVisibleModulesCache() const { assert(VisibleModulesCache.empty() && "cache does not need building"); // This module is visible to itself. VisibleModulesCache.insert(this); // Every imported module is visible. SmallVector Stack(Imports.begin(), Imports.end()); while (!Stack.empty()) { Module *CurrModule = Stack.pop_back_val(); // Every module transitively exported by an imported module is visible. if (VisibleModulesCache.insert(CurrModule).second) CurrModule->getExportedModules(Stack); } } void Module::print(raw_ostream &OS, unsigned Indent, bool Dump) const { OS.indent(Indent); if (IsFramework) OS << "framework "; if (IsExplicit) OS << "explicit "; OS << "module "; printModuleId(OS, &Name, &Name + 1); if (IsSystem || IsExternC) { OS.indent(Indent + 2); if (IsSystem) OS << " [system]"; if (IsExternC) OS << " [extern_c]"; } OS << " {\n"; if (!Requirements.empty()) { OS.indent(Indent + 2); OS << "requires "; for (unsigned I = 0, N = Requirements.size(); I != N; ++I) { if (I) OS << ", "; if (!Requirements[I].RequiredState) OS << "!"; OS << Requirements[I].FeatureName; } OS << "\n"; } if (std::optional
H = getUmbrellaHeaderAsWritten()) { OS.indent(Indent + 2); OS << "umbrella header \""; OS.write_escaped(H->NameAsWritten); OS << "\"\n"; } else if (std::optional D = getUmbrellaDirAsWritten()) { OS.indent(Indent + 2); OS << "umbrella \""; OS.write_escaped(D->NameAsWritten); OS << "\"\n"; } if (!ConfigMacros.empty() || ConfigMacrosExhaustive) { OS.indent(Indent + 2); OS << "config_macros "; if (ConfigMacrosExhaustive) OS << "[exhaustive]"; for (unsigned I = 0, N = ConfigMacros.size(); I != N; ++I) { if (I) OS << ", "; OS << ConfigMacros[I]; } OS << "\n"; } struct { StringRef Prefix; HeaderKind Kind; } Kinds[] = {{"", HK_Normal}, {"textual ", HK_Textual}, {"private ", HK_Private}, {"private textual ", HK_PrivateTextual}, {"exclude ", HK_Excluded}}; for (auto &K : Kinds) { assert(&K == &Kinds[K.Kind] && "kinds in wrong order"); for (auto &H : Headers[K.Kind]) { OS.indent(Indent + 2); OS << K.Prefix << "header \""; OS.write_escaped(H.NameAsWritten); OS << "\" { size " << H.Entry.getSize() << " mtime " << H.Entry.getModificationTime() << " }\n"; } } for (auto *Unresolved : {&UnresolvedHeaders, &MissingHeaders}) { for (auto &U : *Unresolved) { OS.indent(Indent + 2); OS << Kinds[U.Kind].Prefix << "header \""; OS.write_escaped(U.FileName); OS << "\""; if (U.Size || U.ModTime) { OS << " {"; if (U.Size) OS << " size " << *U.Size; if (U.ModTime) OS << " mtime " << *U.ModTime; OS << " }"; } OS << "\n"; } } if (!ExportAsModule.empty()) { OS.indent(Indent + 2); OS << "export_as" << ExportAsModule << "\n"; } for (auto *Submodule : submodules()) // Print inferred subframework modules so that we don't need to re-infer // them (requires expensive directory iteration + stat calls) when we build // the module. Regular inferred submodules are OK, as we need to look at all // those header files anyway. if (!Submodule->IsInferred || Submodule->IsFramework) Submodule->print(OS, Indent + 2, Dump); for (unsigned I = 0, N = Exports.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "export "; if (Module *Restriction = Exports[I].getPointer()) { OS << Restriction->getFullModuleName(true); if (Exports[I].getInt()) OS << ".*"; } else { OS << "*"; } OS << "\n"; } for (unsigned I = 0, N = UnresolvedExports.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "export "; printModuleId(OS, UnresolvedExports[I].Id); if (UnresolvedExports[I].Wildcard) OS << (UnresolvedExports[I].Id.empty() ? "*" : ".*"); OS << "\n"; } if (Dump) { for (Module *M : Imports) { OS.indent(Indent + 2); llvm::errs() << "import " << M->getFullModuleName() << "\n"; } } for (unsigned I = 0, N = DirectUses.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "use "; OS << DirectUses[I]->getFullModuleName(true); OS << "\n"; } for (unsigned I = 0, N = UnresolvedDirectUses.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "use "; printModuleId(OS, UnresolvedDirectUses[I]); OS << "\n"; } for (unsigned I = 0, N = LinkLibraries.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "link "; if (LinkLibraries[I].IsFramework) OS << "framework "; OS << "\""; OS.write_escaped(LinkLibraries[I].Library); OS << "\""; } for (unsigned I = 0, N = UnresolvedConflicts.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "conflict "; printModuleId(OS, UnresolvedConflicts[I].Id); OS << ", \""; OS.write_escaped(UnresolvedConflicts[I].Message); OS << "\"\n"; } for (unsigned I = 0, N = Conflicts.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "conflict "; OS << Conflicts[I].Other->getFullModuleName(true); OS << ", \""; OS.write_escaped(Conflicts[I].Message); OS << "\"\n"; } if (InferSubmodules) { OS.indent(Indent + 2); if (InferExplicitSubmodules) OS << "explicit "; OS << "module * {\n"; if (InferExportWildcard) { OS.indent(Indent + 4); OS << "export *\n"; } OS.indent(Indent + 2); OS << "}\n"; } OS.indent(Indent); OS << "}\n"; } LLVM_DUMP_METHOD void Module::dump() const { print(llvm::errs(), 0, true); } void VisibleModuleSet::setVisible(Module *M, SourceLocation Loc, VisibleCallback Vis, ConflictCallback Cb) { // We can't import a global module fragment so the location can be invalid. assert((M->isGlobalModule() || Loc.isValid()) && "setVisible expects a valid import location"); if (isVisible(M)) return; ++Generation; struct Visiting { Module *M; Visiting *ExportedBy; }; std::function VisitModule = [&](Visiting V) { // Nothing to do for a module that's already visible. unsigned ID = V.M->getVisibilityID(); if (ImportLocs.size() <= ID) ImportLocs.resize(ID + 1); else if (ImportLocs[ID].isValid()) return; ImportLocs[ID] = Loc; Vis(V.M); // Make any exported modules visible. SmallVector Exports; V.M->getExportedModules(Exports); for (Module *E : Exports) { // Don't import non-importable modules. if (!E->isUnimportable()) VisitModule({E, &V}); } for (auto &C : V.M->Conflicts) { if (isVisible(C.Other)) { llvm::SmallVector Path; for (Visiting *I = &V; I; I = I->ExportedBy) Path.push_back(I->M); Cb(Path, C.Other, C.Message); } } }; VisitModule({M, nullptr}); }