//===--- Pointer.cpp - Types for the constexpr VM ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Pointer.h" #include "Boolean.h" #include "Context.h" #include "Floating.h" #include "Function.h" #include "Integral.h" #include "InterpBlock.h" #include "MemberPointer.h" #include "PrimType.h" #include "Record.h" #include "clang/AST/RecordLayout.h" using namespace clang; using namespace clang::interp; Pointer::Pointer(Block *Pointee) : Pointer(Pointee, Pointee->getDescriptor()->getMetadataSize(), Pointee->getDescriptor()->getMetadataSize()) {} Pointer::Pointer(Block *Pointee, uint64_t BaseAndOffset) : Pointer(Pointee, BaseAndOffset, BaseAndOffset) {} Pointer::Pointer(const Pointer &P) : Offset(P.Offset), PointeeStorage(P.PointeeStorage), StorageKind(P.StorageKind) { if (isBlockPointer() && PointeeStorage.BS.Pointee) PointeeStorage.BS.Pointee->addPointer(this); } Pointer::Pointer(Block *Pointee, unsigned Base, uint64_t Offset) : Offset(Offset), StorageKind(Storage::Block) { assert((Base == RootPtrMark || Base % alignof(void *) == 0) && "wrong base"); PointeeStorage.BS = {Pointee, Base}; if (Pointee) Pointee->addPointer(this); } Pointer::Pointer(Pointer &&P) : Offset(P.Offset), PointeeStorage(P.PointeeStorage), StorageKind(P.StorageKind) { if (StorageKind == Storage::Block && PointeeStorage.BS.Pointee) PointeeStorage.BS.Pointee->replacePointer(&P, this); } Pointer::~Pointer() { if (isIntegralPointer()) return; if (Block *Pointee = PointeeStorage.BS.Pointee) { Pointee->removePointer(this); Pointee->cleanup(); } } void Pointer::operator=(const Pointer &P) { // If the current storage type is Block, we need to remove // this pointer from the block. bool WasBlockPointer = isBlockPointer(); if (StorageKind == Storage::Block) { Block *Old = PointeeStorage.BS.Pointee; if (WasBlockPointer && Old) { PointeeStorage.BS.Pointee->removePointer(this); Old->cleanup(); } } StorageKind = P.StorageKind; Offset = P.Offset; if (P.isBlockPointer()) { PointeeStorage.BS = P.PointeeStorage.BS; PointeeStorage.BS.Pointee = P.PointeeStorage.BS.Pointee; if (PointeeStorage.BS.Pointee) PointeeStorage.BS.Pointee->addPointer(this); } else if (P.isIntegralPointer()) { PointeeStorage.Int = P.PointeeStorage.Int; } else { assert(false && "Unhandled storage kind"); } } void Pointer::operator=(Pointer &&P) { // If the current storage type is Block, we need to remove // this pointer from the block. bool WasBlockPointer = isBlockPointer(); if (StorageKind == Storage::Block) { Block *Old = PointeeStorage.BS.Pointee; if (WasBlockPointer && Old) { PointeeStorage.BS.Pointee->removePointer(this); Old->cleanup(); } } StorageKind = P.StorageKind; Offset = P.Offset; if (P.isBlockPointer()) { PointeeStorage.BS = P.PointeeStorage.BS; PointeeStorage.BS.Pointee = P.PointeeStorage.BS.Pointee; if (PointeeStorage.BS.Pointee) PointeeStorage.BS.Pointee->addPointer(this); } else if (P.isIntegralPointer()) { PointeeStorage.Int = P.PointeeStorage.Int; } else { assert(false && "Unhandled storage kind"); } } APValue Pointer::toAPValue(const ASTContext &ASTCtx) const { llvm::SmallVector Path; if (isZero()) return APValue(static_cast(nullptr), CharUnits::Zero(), Path, /*IsOnePastEnd=*/false, /*IsNullPtr=*/true); if (isIntegralPointer()) return APValue(static_cast(nullptr), CharUnits::fromQuantity(asIntPointer().Value + this->Offset), Path, /*IsOnePastEnd=*/false, /*IsNullPtr=*/false); // Build the lvalue base from the block. const Descriptor *Desc = getDeclDesc(); APValue::LValueBase Base; if (const auto *VD = Desc->asValueDecl()) Base = VD; else if (const auto *E = Desc->asExpr()) Base = E; else llvm_unreachable("Invalid allocation type"); if (isUnknownSizeArray() || Desc->asExpr()) return APValue(Base, CharUnits::Zero(), Path, /*IsOnePastEnd=*/isOnePastEnd(), /*IsNullPtr=*/false); CharUnits Offset = CharUnits::Zero(); auto getFieldOffset = [&](const FieldDecl *FD) -> CharUnits { // This shouldn't happen, but if it does, don't crash inside // getASTRecordLayout. if (FD->getParent()->isInvalidDecl()) return CharUnits::Zero(); const ASTRecordLayout &Layout = ASTCtx.getASTRecordLayout(FD->getParent()); unsigned FieldIndex = FD->getFieldIndex(); return ASTCtx.toCharUnitsFromBits(Layout.getFieldOffset(FieldIndex)); }; // Build the path into the object. Pointer Ptr = *this; while (Ptr.isField() || Ptr.isArrayElement()) { if (Ptr.isArrayRoot()) { Path.push_back(APValue::LValuePathEntry( {Ptr.getFieldDesc()->asDecl(), /*IsVirtual=*/false})); if (const auto *FD = dyn_cast(Ptr.getFieldDesc()->asDecl())) Offset += getFieldOffset(FD); Ptr = Ptr.getBase(); } else if (Ptr.isArrayElement()) { unsigned Index; if (Ptr.isOnePastEnd()) Index = Ptr.getArray().getNumElems(); else Index = Ptr.getIndex(); Offset += (Index * ASTCtx.getTypeSizeInChars(Ptr.getType())); Path.push_back(APValue::LValuePathEntry::ArrayIndex(Index)); Ptr = Ptr.getArray(); } else { bool IsVirtual = false; // Create a path entry for the field. const Descriptor *Desc = Ptr.getFieldDesc(); if (const auto *BaseOrMember = Desc->asDecl()) { if (const auto *FD = dyn_cast(BaseOrMember)) { Ptr = Ptr.getBase(); Offset += getFieldOffset(FD); } else if (const auto *RD = dyn_cast(BaseOrMember)) { IsVirtual = Ptr.isVirtualBaseClass(); Ptr = Ptr.getBase(); const Record *BaseRecord = Ptr.getRecord(); const ASTRecordLayout &Layout = ASTCtx.getASTRecordLayout( cast(BaseRecord->getDecl())); if (IsVirtual) Offset += Layout.getVBaseClassOffset(RD); else Offset += Layout.getBaseClassOffset(RD); } else { Ptr = Ptr.getBase(); } Path.push_back(APValue::LValuePathEntry({BaseOrMember, IsVirtual})); continue; } llvm_unreachable("Invalid field type"); } } // FIXME(perf): We compute the lvalue path above, but we can't supply it // for dummy pointers (that causes crashes later in CheckConstantExpression). if (isDummy()) Path.clear(); // We assemble the LValuePath starting from the innermost pointer to the // outermost one. SO in a.b.c, the first element in Path will refer to // the field 'c', while later code expects it to refer to 'a'. // Just invert the order of the elements. std::reverse(Path.begin(), Path.end()); return APValue(Base, Offset, Path, /*IsOnePastEnd=*/isOnePastEnd(), /*IsNullPtr=*/false); } void Pointer::print(llvm::raw_ostream &OS) const { OS << PointeeStorage.BS.Pointee << " ("; if (isBlockPointer()) { const Block *B = PointeeStorage.BS.Pointee; OS << "Block) {"; if (isRoot()) OS << "rootptr(" << PointeeStorage.BS.Base << "), "; else OS << PointeeStorage.BS.Base << ", "; if (isElementPastEnd()) OS << "pastend, "; else OS << Offset << ", "; if (B) OS << B->getSize(); else OS << "nullptr"; } else { OS << "Int) {"; OS << PointeeStorage.Int.Value << ", " << PointeeStorage.Int.Desc; } OS << "}"; } std::string Pointer::toDiagnosticString(const ASTContext &Ctx) const { if (isZero()) return "nullptr"; if (isIntegralPointer()) return (Twine("&(") + Twine(asIntPointer().Value + Offset) + ")").str(); return toAPValue(Ctx).getAsString(Ctx, getType()); } bool Pointer::isInitialized() const { if (isIntegralPointer()) return true; if (isRoot() && PointeeStorage.BS.Base == sizeof(GlobalInlineDescriptor)) { const GlobalInlineDescriptor &GD = *reinterpret_cast(block()->rawData()); return GD.InitState == GlobalInitState::Initialized; } assert(PointeeStorage.BS.Pointee && "Cannot check if null pointer was initialized"); const Descriptor *Desc = getFieldDesc(); assert(Desc); if (Desc->isPrimitiveArray()) { if (isStatic() && PointeeStorage.BS.Base == 0) return true; InitMapPtr &IM = getInitMap(); if (!IM) return false; if (IM->first) return true; return IM->second->isElementInitialized(getIndex()); } if (asBlockPointer().Base == 0) return true; // Field has its bit in an inline descriptor. return getInlineDesc()->IsInitialized; } void Pointer::initialize() const { if (isIntegralPointer()) return; assert(PointeeStorage.BS.Pointee && "Cannot initialize null pointer"); const Descriptor *Desc = getFieldDesc(); if (isRoot() && PointeeStorage.BS.Base == sizeof(GlobalInlineDescriptor)) { GlobalInlineDescriptor &GD = *reinterpret_cast( asBlockPointer().Pointee->rawData()); GD.InitState = GlobalInitState::Initialized; return; } assert(Desc); if (Desc->isPrimitiveArray()) { // Primitive global arrays don't have an initmap. if (isStatic() && PointeeStorage.BS.Base == 0) return; // Nothing to do for these. if (Desc->getNumElems() == 0) return; InitMapPtr &IM = getInitMap(); if (!IM) IM = std::make_pair(false, std::make_shared(Desc->getNumElems())); assert(IM); // All initialized. if (IM->first) return; if (IM->second->initializeElement(getIndex())) { IM->first = true; IM->second.reset(); } return; } // Field has its bit in an inline descriptor. assert(PointeeStorage.BS.Base != 0 && "Only composite fields can be initialised"); getInlineDesc()->IsInitialized = true; } void Pointer::activate() const { // Field has its bit in an inline descriptor. assert(PointeeStorage.BS.Base != 0 && "Only composite fields can be initialised"); if (isRoot() && PointeeStorage.BS.Base == sizeof(GlobalInlineDescriptor)) return; getInlineDesc()->IsActive = true; } void Pointer::deactivate() const { // TODO: this only appears in constructors, so nothing to deactivate. } bool Pointer::hasSameBase(const Pointer &A, const Pointer &B) { // Two null pointers always have the same base. if (A.isZero() && B.isZero()) return true; if (A.isIntegralPointer() && B.isIntegralPointer()) return true; if (A.isIntegralPointer() || B.isIntegralPointer()) return A.getSource() == B.getSource(); return A.asBlockPointer().Pointee == B.asBlockPointer().Pointee; } bool Pointer::hasSameArray(const Pointer &A, const Pointer &B) { return hasSameBase(A, B) && A.PointeeStorage.BS.Base == B.PointeeStorage.BS.Base && A.getFieldDesc()->IsArray; } std::optional Pointer::toRValue(const Context &Ctx, QualType ResultType) const { const ASTContext &ASTCtx = Ctx.getASTContext(); assert(!ResultType.isNull()); // Method to recursively traverse composites. std::function Composite; Composite = [&Composite, &Ctx, &ASTCtx](QualType Ty, const Pointer &Ptr, APValue &R) { if (const auto *AT = Ty->getAs()) Ty = AT->getValueType(); // Invalid pointers. if (Ptr.isDummy() || !Ptr.isLive() || !Ptr.isBlockPointer() || Ptr.isPastEnd()) return false; // Primitive values. if (std::optional T = Ctx.classify(Ty)) { TYPE_SWITCH(*T, R = Ptr.deref().toAPValue(ASTCtx)); return true; } if (const auto *RT = Ty->getAs()) { const auto *Record = Ptr.getRecord(); assert(Record && "Missing record descriptor"); bool Ok = true; if (RT->getDecl()->isUnion()) { const FieldDecl *ActiveField = nullptr; APValue Value; for (const auto &F : Record->fields()) { const Pointer &FP = Ptr.atField(F.Offset); QualType FieldTy = F.Decl->getType(); if (FP.isActive()) { if (std::optional T = Ctx.classify(FieldTy)) { TYPE_SWITCH(*T, Value = FP.deref().toAPValue(ASTCtx)); } else { Ok &= Composite(FieldTy, FP, Value); } ActiveField = FP.getFieldDesc()->asFieldDecl(); break; } } R = APValue(ActiveField, Value); } else { unsigned NF = Record->getNumFields(); unsigned NB = Record->getNumBases(); unsigned NV = Ptr.isBaseClass() ? 0 : Record->getNumVirtualBases(); R = APValue(APValue::UninitStruct(), NB, NF); for (unsigned I = 0; I < NF; ++I) { const Record::Field *FD = Record->getField(I); QualType FieldTy = FD->Decl->getType(); const Pointer &FP = Ptr.atField(FD->Offset); APValue &Value = R.getStructField(I); if (std::optional T = Ctx.classify(FieldTy)) { TYPE_SWITCH(*T, Value = FP.deref().toAPValue(ASTCtx)); } else { Ok &= Composite(FieldTy, FP, Value); } } for (unsigned I = 0; I < NB; ++I) { const Record::Base *BD = Record->getBase(I); QualType BaseTy = Ctx.getASTContext().getRecordType(BD->Decl); const Pointer &BP = Ptr.atField(BD->Offset); Ok &= Composite(BaseTy, BP, R.getStructBase(I)); } for (unsigned I = 0; I < NV; ++I) { const Record::Base *VD = Record->getVirtualBase(I); QualType VirtBaseTy = Ctx.getASTContext().getRecordType(VD->Decl); const Pointer &VP = Ptr.atField(VD->Offset); Ok &= Composite(VirtBaseTy, VP, R.getStructBase(NB + I)); } } return Ok; } if (Ty->isIncompleteArrayType()) { R = APValue(APValue::UninitArray(), 0, 0); return true; } if (const auto *AT = Ty->getAsArrayTypeUnsafe()) { const size_t NumElems = Ptr.getNumElems(); QualType ElemTy = AT->getElementType(); R = APValue(APValue::UninitArray{}, NumElems, NumElems); bool Ok = true; for (unsigned I = 0; I < NumElems; ++I) { APValue &Slot = R.getArrayInitializedElt(I); const Pointer &EP = Ptr.atIndex(I); if (std::optional T = Ctx.classify(ElemTy)) { TYPE_SWITCH(*T, Slot = EP.deref().toAPValue(ASTCtx)); } else { Ok &= Composite(ElemTy, EP.narrow(), Slot); } } return Ok; } // Complex types. if (const auto *CT = Ty->getAs()) { QualType ElemTy = CT->getElementType(); if (ElemTy->isIntegerType()) { std::optional ElemT = Ctx.classify(ElemTy); assert(ElemT); INT_TYPE_SWITCH(*ElemT, { auto V1 = Ptr.atIndex(0).deref(); auto V2 = Ptr.atIndex(1).deref(); R = APValue(V1.toAPSInt(), V2.toAPSInt()); return true; }); } else if (ElemTy->isFloatingType()) { R = APValue(Ptr.atIndex(0).deref().getAPFloat(), Ptr.atIndex(1).deref().getAPFloat()); return true; } return false; } // Vector types. if (const auto *VT = Ty->getAs()) { assert(Ptr.getFieldDesc()->isPrimitiveArray()); QualType ElemTy = VT->getElementType(); PrimType ElemT = *Ctx.classify(ElemTy); SmallVector Values; Values.reserve(VT->getNumElements()); for (unsigned I = 0; I != VT->getNumElements(); ++I) { TYPE_SWITCH(ElemT, { Values.push_back(Ptr.atIndex(I).deref().toAPValue(ASTCtx)); }); } assert(Values.size() == VT->getNumElements()); R = APValue(Values.data(), Values.size()); return true; } llvm_unreachable("invalid value to return"); }; // Invalid to read from. if (isDummy() || !isLive() || isPastEnd()) return std::nullopt; // We can return these as rvalues, but we can't deref() them. if (isZero() || isIntegralPointer()) return toAPValue(ASTCtx); // Just load primitive types. if (std::optional T = Ctx.classify(ResultType)) { TYPE_SWITCH(*T, return this->deref().toAPValue(ASTCtx)); } // Return the composite type. APValue Result; if (!Composite(getType(), *this, Result)) return std::nullopt; return Result; }