/* * Core approximation for double-precision vector sincos * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "poly_advsimd_f64.h" static const struct v_sincos_data { float64x2_t sin_poly[7], cos_poly[6], pio2[3]; float64x2_t inv_pio2, shift, range_val; } v_sincos_data = { .inv_pio2 = V2 (0x1.45f306dc9c882p-1), .pio2 = { V2 (0x1.921fb50000000p+0), V2 (0x1.110b460000000p-26), V2 (0x1.1a62633145c07p-54) }, .shift = V2 (0x1.8p52), .sin_poly = { /* Computed using Remez in [-pi/2, pi/2]. */ V2 (-0x1.555555555547bp-3), V2 (0x1.1111111108a4dp-7), V2 (-0x1.a01a019936f27p-13), V2 (0x1.71de37a97d93ep-19), V2 (-0x1.ae633919987c6p-26), V2 (0x1.60e277ae07cecp-33), V2 (-0x1.9e9540300a1p-41) }, .cos_poly = { /* Computed using Remez in [-pi/4, pi/4]. */ V2 (0x1.555555555554cp-5), V2 (-0x1.6c16c16c1521fp-10), V2 (0x1.a01a019cbf62ap-16), V2 (-0x1.27e4f812b681ep-22), V2 (0x1.1ee9f152a57cdp-29), V2 (-0x1.8fb131098404bp-37) }, .range_val = V2 (0x1p23), }; static inline uint64x2_t check_ge_rangeval (float64x2_t x, const struct v_sincos_data *d) { return vcagtq_f64 (x, d->range_val); } /* Double-precision vector function allowing calculation of both sin and cos in one function call, using shared argument reduction and separate polynomials. Largest observed error is for sin, 3.22 ULP: v_sincos_sin (0x1.d70eef40f39b1p+12) got -0x1.ffe9537d5dbb7p-3 want -0x1.ffe9537d5dbb4p-3. */ static inline float64x2x2_t v_sincos_inline (float64x2_t x, const struct v_sincos_data *d) { /* q = nearest integer to 2 * x / pi. */ float64x2_t q = vsubq_f64 (vfmaq_f64 (d->shift, x, d->inv_pio2), d->shift); int64x2_t n = vcvtq_s64_f64 (q); /* Use q to reduce x to r in [-pi/4, pi/4], by: r = x - q * pi/2, in extended precision. */ float64x2_t r = x; r = vfmsq_f64 (r, q, d->pio2[0]); r = vfmsq_f64 (r, q, d->pio2[1]); r = vfmsq_f64 (r, q, d->pio2[2]); float64x2_t r2 = r * r, r3 = r2 * r, r4 = r2 * r2; /* Approximate sin(r) ~= r + r^3 * poly_sin(r^2). */ float64x2_t s = v_pw_horner_6_f64 (r2, r4, d->sin_poly); s = vfmaq_f64 (r, r3, s); /* Approximate cos(r) ~= 1 - (r^2)/2 + r^4 * poly_cos(r^2). */ float64x2_t c = v_pw_horner_5_f64 (r2, r4, d->cos_poly); c = vfmaq_f64 (v_f64 (-0.5), r2, c); c = vfmaq_f64 (v_f64 (1), r2, c); /* If odd quadrant, swap cos and sin. */ uint64x2_t swap = vtstq_s64 (n, v_s64 (1)); float64x2_t ss = vbslq_f64 (swap, c, s); float64x2_t cc = vbslq_f64 (swap, s, c); /* Fix signs according to quadrant. ss = asdouble(asuint64(ss) ^ ((n & 2) << 62)) cc = asdouble(asuint64(cc) & (((n + 1) & 2) << 62)). */ uint64x2_t sin_sign = vshlq_n_u64 (vandq_u64 (vreinterpretq_u64_s64 (n), v_u64 (2)), 62); uint64x2_t cos_sign = vshlq_n_u64 ( vandq_u64 (vreinterpretq_u64_s64 (vaddq_s64 (n, v_s64 (1))), v_u64 (2)), 62); ss = vreinterpretq_f64_u64 ( veorq_u64 (vreinterpretq_u64_f64 (ss), sin_sign)); cc = vreinterpretq_f64_u64 ( veorq_u64 (vreinterpretq_u64_f64 (cc), cos_sign)); return (float64x2x2_t){ ss, cc }; }