/* * Single-precision vector log(1+x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_advsimd_f32.h" const static struct data { float32x4_t poly[8], ln2; uint32x4_t tiny_bound, minus_one, four, thresh; int32x4_t three_quarters; } data = { .poly = { /* Generated using FPMinimax in [-0.25, 0.5]. First two coefficients (1, -0.5) are not stored as they can be generated more efficiently. */ V4 (0x1.5555aap-2f), V4 (-0x1.000038p-2f), V4 (0x1.99675cp-3f), V4 (-0x1.54ef78p-3f), V4 (0x1.28a1f4p-3f), V4 (-0x1.0da91p-3f), V4 (0x1.abcb6p-4f), V4 (-0x1.6f0d5ep-5f) }, .ln2 = V4 (0x1.62e43p-1f), .tiny_bound = V4 (0x34000000), /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */ .thresh = V4 (0x4b800000), /* asuint32(INFINITY) - tiny_bound. */ .minus_one = V4 (0xbf800000), .four = V4 (0x40800000), .three_quarters = V4 (0x3f400000) }; static inline float32x4_t eval_poly (float32x4_t m, const float32x4_t *p) { /* Approximate log(1+m) on [-0.25, 0.5] using split Estrin scheme. */ float32x4_t p_12 = vfmaq_f32 (v_f32 (-0.5), m, p[0]); float32x4_t p_34 = vfmaq_f32 (p[1], m, p[2]); float32x4_t p_56 = vfmaq_f32 (p[3], m, p[4]); float32x4_t p_78 = vfmaq_f32 (p[5], m, p[6]); float32x4_t m2 = vmulq_f32 (m, m); float32x4_t p_02 = vfmaq_f32 (m, m2, p_12); float32x4_t p_36 = vfmaq_f32 (p_34, m2, p_56); float32x4_t p_79 = vfmaq_f32 (p_78, m2, p[7]); float32x4_t m4 = vmulq_f32 (m2, m2); float32x4_t p_06 = vfmaq_f32 (p_02, m4, p_36); return vfmaq_f32 (p_06, m4, vmulq_f32 (m4, p_79)); } static float32x4_t NOINLINE VPCS_ATTR special_case (float32x4_t x, float32x4_t y, uint32x4_t special) { return v_call_f32 (log1pf, x, y, special); } /* Vector log1pf approximation using polynomial on reduced interval. Accuracy is roughly 2.02 ULP: log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */ VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x) { const struct data *d = ptr_barrier (&data); uint32x4_t ix = vreinterpretq_u32_f32 (x); uint32x4_t ia = vreinterpretq_u32_f32 (vabsq_f32 (x)); uint32x4_t special_cases = vorrq_u32 (vcgeq_u32 (vsubq_u32 (ia, d->tiny_bound), d->thresh), vcgeq_u32 (ix, d->minus_one)); float32x4_t special_arg = x; #if WANT_SIMD_EXCEPT if (unlikely (v_any_u32 (special_cases))) /* Side-step special lanes so fenv exceptions are not triggered inadvertently. */ x = v_zerofy_f32 (x, special_cases); #endif /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m is in [-0.25, 0.5]): log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). We approximate log1p(m) with a polynomial, then scale by k*log(2). Instead of doing this directly, we use an intermediate scale factor s = 4*k*log(2) to ensure the scale is representable as a normalised fp32 number. */ float32x4_t m = vaddq_f32 (x, v_f32 (1.0f)); /* Choose k to scale x to the range [-1/4, 1/2]. */ int32x4_t k = vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters), v_s32 (0xff800000)); uint32x4_t ku = vreinterpretq_u32_s32 (k); /* Scale x by exponent manipulation. */ float32x4_t m_scale = vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku)); /* Scale up to ensure that the scale factor is representable as normalised fp32 number, and scale m down accordingly. */ float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku)); m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s)); /* Evaluate polynomial on the reduced interval. */ float32x4_t p = eval_poly (m_scale, d->poly); /* The scale factor to be applied back at the end - by multiplying float(k) by 2^-23 we get the unbiased exponent of k. */ float32x4_t scale_back = vcvtq_f32_s32 (vshrq_n_s32 (k, 23)); /* Apply the scaling back. */ float32x4_t y = vfmaq_f32 (p, scale_back, d->ln2); if (unlikely (v_any_u32 (special_cases))) return special_case (special_arg, y, special_cases); return y; } PL_SIG (V, F, 1, log1p, -0.9, 10.0) PL_TEST_ULP (V_NAME_F1 (log1p), 1.53) PL_TEST_EXPECT_FENV (V_NAME_F1 (log1p), WANT_SIMD_EXCEPT) PL_TEST_SYM_INTERVAL (V_NAME_F1 (log1p), 0.0, 0x1p-23, 30000) PL_TEST_SYM_INTERVAL (V_NAME_F1 (log1p), 0x1p-23, 1, 50000) PL_TEST_INTERVAL (V_NAME_F1 (log1p), 1, inf, 50000) PL_TEST_INTERVAL (V_NAME_F1 (log1p), -1.0, -inf, 1000)