/* * Double-precision vector cbrt(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_advsimd_f64.h" const static struct data { float64x2_t poly[4], one_third, shift; int64x2_t exp_bias; uint64x2_t abs_mask, tiny_bound; uint32x4_t thresh; double table[5]; } data = { .shift = V2 (0x1.8p52), .poly = { /* Generated with fpminimax in [0.5, 1]. */ V2 (0x1.c14e8ee44767p-2), V2 (0x1.dd2d3f99e4c0ep-1), V2 (-0x1.08e83026b7e74p-1), V2 (0x1.2c74eaa3ba428p-3) }, .exp_bias = V2 (1022), .abs_mask = V2(0x7fffffffffffffff), .tiny_bound = V2(0x0010000000000000), /* Smallest normal. */ .thresh = V4(0x7fe00000), /* asuint64 (infinity) - tiny_bound. */ .one_third = V2(0x1.5555555555555p-2), .table = { /* table[i] = 2^((i - 2) / 3). */ 0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0, 0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0 } }; #define MantissaMask v_u64 (0x000fffffffffffff) static float64x2_t NOINLINE VPCS_ATTR special_case (float64x2_t x, float64x2_t y, uint32x2_t special) { return v_call_f64 (cbrt, x, y, vmovl_u32 (special)); } /* Approximation for double-precision vector cbrt(x), using low-order polynomial and two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat according to the exponent, for instance an error observed for double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an integer. __v_cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0 want 0x1.965fe72821e99p+0. */ VPCS_ATTR float64x2_t V_NAME_D1 (cbrt) (float64x2_t x) { const struct data *d = ptr_barrier (&data); uint64x2_t iax = vreinterpretq_u64_f64 (vabsq_f64 (x)); /* Subnormal, +/-0 and special values. */ uint32x2_t special = vcge_u32 (vsubhn_u64 (iax, d->tiny_bound), vget_low_u32 (d->thresh)); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexp, which gets subnormal values wrong - these have to be special-cased as a result. */ float64x2_t m = vbslq_f64 (MantissaMask, x, v_f64 (0.5)); int64x2_t exp_bias = d->exp_bias; uint64x2_t ia12 = vshrq_n_u64 (iax, 52); int64x2_t e = vsubq_s64 (vreinterpretq_s64_u64 (ia12), exp_bias); /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for Newton iterations. */ float64x2_t p = v_pairwise_poly_3_f64 (m, vmulq_f64 (m, m), d->poly); float64x2_t one_third = d->one_third; /* Two iterations of Newton's method for iteratively approximating cbrt. */ float64x2_t m_by_3 = vmulq_f64 (m, one_third); float64x2_t two_thirds = vaddq_f64 (one_third, one_third); float64x2_t a = vfmaq_f64 (vdivq_f64 (m_by_3, vmulq_f64 (p, p)), two_thirds, p); a = vfmaq_f64 (vdivq_f64 (m_by_3, vmulq_f64 (a, a)), two_thirds, a); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ float64x2_t ef = vcvtq_f64_s64 (e); float64x2_t eb3f = vrndnq_f64 (vmulq_f64 (ef, one_third)); int64x2_t em3 = vcvtq_s64_f64 (vfmsq_f64 (ef, eb3f, v_f64 (3))); int64x2_t ey = vcvtq_s64_f64 (eb3f); float64x2_t my = (float64x2_t){ d->table[em3[0] + 2], d->table[em3[1] + 2] }; my = vmulq_f64 (my, a); /* Vector version of ldexp. */ float64x2_t y = vreinterpretq_f64_s64 ( vshlq_n_s64 (vaddq_s64 (ey, vaddq_s64 (exp_bias, v_s64 (1))), 52)); y = vmulq_f64 (y, my); if (unlikely (v_any_u32h (special))) return special_case (x, vbslq_f64 (d->abs_mask, y, x), special); /* Copy sign. */ return vbslq_f64 (d->abs_mask, y, x); } PL_TEST_ULP (V_NAME_D1 (cbrt), 1.30) PL_SIG (V, D, 1, cbrt, -10.0, 10.0) PL_TEST_EXPECT_FENV_ALWAYS (V_NAME_D1 (cbrt)) PL_TEST_SYM_INTERVAL (V_NAME_D1 (cbrt), 0, inf, 1000000)