/* * Single-precision SVE sinpi(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "mathlib.h" #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_sve_f32.h" static const struct data { float poly[6]; } data = { /* Taylor series coefficents for sin(pi * x). */ .poly = { 0x1.921fb6p1f, -0x1.4abbcep2f, 0x1.466bc6p1f, -0x1.32d2ccp-1f, 0x1.50783p-4f, -0x1.e30750p-8f }, }; /* A fast SVE implementation of sinpif. Maximum error 2.48 ULP: _ZGVsMxv_sinpif(0x1.d062b6p-2) got 0x1.fa8c06p-1 want 0x1.fa8c02p-1. */ svfloat32_t SV_NAME_F1 (sinpi) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); /* range reduction into -1/2 .. 1/2 with n = rint(x) and r = r - n. */ svfloat32_t n = svrinta_x (pg, x); svfloat32_t r = svsub_x (pg, x, n); /* Result should be negated based on if n is odd or not. */ svuint32_t intn = svreinterpret_u32 (svcvt_s32_x (pg, n)); svuint32_t sign = svlsl_z (pg, intn, 31); /* y = sin(r). */ svfloat32_t r2 = svmul_x (pg, r, r); svfloat32_t y = sv_horner_5_f32_x (pg, r2, d->poly); y = svmul_x (pg, y, r); return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign)); } PL_SIG (SV, F, 1, sinpi, -0.9, 0.9) PL_TEST_ULP (SV_NAME_F1 (sinpi), 1.99) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (sinpi), 0, 0x1p-31, 5000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (sinpi), 0x1p-31, 0.5, 10000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (sinpi), 0.5, 0x1p22f, 10000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (sinpi), 0x1p22f, inf, 10000)