/* * Double-precision sinh(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #include "pl_sig.h" #include "pl_test.h" #define AbsMask 0x7fffffffffffffff #define Half 0x3fe0000000000000 #define OFlowBound \ 0x40862e42fefa39f0 /* 0x1.62e42fefa39fp+9, above which using expm1 results \ in NaN. */ double __exp_dd (double, double); /* Approximation for double-precision sinh(x) using expm1. sinh(x) = (exp(x) - exp(-x)) / 2. The greatest observed error is 2.57 ULP: __v_sinh(0x1.9fb1d49d1d58bp-2) got 0x1.ab34e59d678dcp-2 want 0x1.ab34e59d678d9p-2. */ double sinh (double x) { uint64_t ix = asuint64 (x); uint64_t iax = ix & AbsMask; double ax = asdouble (iax); uint64_t sign = ix & ~AbsMask; double halfsign = asdouble (Half | sign); if (unlikely (iax >= OFlowBound)) { /* Special values and overflow. */ if (unlikely (iax > 0x7ff0000000000000)) return __math_invalidf (x); /* expm1 overflows a little before sinh. We have to fill this gap by using a different algorithm, in this case we use a double-precision exp helper. For large x sinh(x) is dominated by exp(x), however we cannot compute exp without overflow either. We use the identity: exp(a) = (exp(a / 2)) ^ 2 to compute sinh(x) ~= (exp(|x| / 2)) ^ 2 / 2 for x > 0 ~= (exp(|x| / 2)) ^ 2 / -2 for x < 0. */ double e = __exp_dd (ax / 2, 0); return (e * halfsign) * e; } /* Use expm1f to retain acceptable precision for small numbers. Let t = e^(|x|) - 1. */ double t = expm1 (ax); /* Then sinh(x) = (t + t / (t + 1)) / 2 for x > 0 (t + t / (t + 1)) / -2 for x < 0. */ return (t + t / (t + 1)) * halfsign; } PL_SIG (S, D, 1, sinh, -10.0, 10.0) PL_TEST_ULP (sinh, 2.08) PL_TEST_SYM_INTERVAL (sinh, 0, 0x1p-51, 100) PL_TEST_SYM_INTERVAL (sinh, 0x1p-51, 0x1.62e42fefa39fp+9, 100000) PL_TEST_SYM_INTERVAL (sinh, 0x1.62e42fefa39fp+9, inf, 1000)