/* * Double-precision acos(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #include "poly_scalar_f64.h" #include "pl_sig.h" #include "pl_test.h" #define AbsMask (0x7fffffffffffffff) #define Half (0x3fe0000000000000) #define One (0x3ff0000000000000) #define PiOver2 (0x1.921fb54442d18p+0) #define Pi (0x1.921fb54442d18p+1) #define Small (0x3c90000000000000) /* 2^-53. */ #define Small16 (0x3c90) #define QNaN (0x7ff8) /* Fast implementation of double-precision acos(x) based on polynomial approximation of double-precision asin(x). For x < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct rounding. For |x| in [Small, 0.5], use the trigonometric identity acos(x) = pi/2 - asin(x) and use an order 11 polynomial P such that the final approximation of asin is an odd polynomial: asin(x) ~ x + x^3 * P(x^2). The largest observed error in this region is 1.18 ulps, acos(0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0 want 0x1.0d54d1985c069p+0. For |x| in [0.5, 1.0], use the following development of acos(x) near x = 1 acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z)) where z = (1-x)/2, z is near 0 when x approaches 1, and P contributes to the approximation of asin near 0. The largest observed error in this region is 1.52 ulps, acos(0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1 want 0x1.edbbedf8a7d6cp-1. For x in [-1.0, -0.5], use this other identity to deduce the negative inputs from their absolute value: acos(x) = pi - acos(-x). */ double acos (double x) { uint64_t ix = asuint64 (x); uint64_t ia = ix & AbsMask; uint64_t ia16 = ia >> 48; double ax = asdouble (ia); uint64_t sign = ix & ~AbsMask; /* Special values and invalid range. */ if (unlikely (ia16 == QNaN)) return x; if (ia > One) return __math_invalid (x); if (ia16 < Small16) return PiOver2 - x; /* Evaluate polynomial Q(|x|) = z + z * z2 * P(z2) with z2 = x ^ 2 and z = |x| , if |x| < 0.5 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ double z2 = ax < 0.5 ? x * x : fma (-0.5, ax, 0.5); double z = ax < 0.5 ? ax : sqrt (z2); /* Use a single polynomial approximation P for both intervals. */ double z4 = z2 * z2; double z8 = z4 * z4; double z16 = z8 * z8; double p = estrin_11_f64 (z2, z4, z8, z16, __asin_poly); /* Finalize polynomial: z + z * z2 * P(z2). */ p = fma (z * z2, p, z); /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 = pi - 2 Q(|x|), for -1.0 < x <= -0.5 = 2 Q(|x|) , for -0.5 < x < 0.0. */ if (ax < 0.5) return PiOver2 - asdouble (asuint64 (p) | sign); return (x <= -0.5) ? fma (-2.0, p, Pi) : 2.0 * p; } PL_SIG (S, D, 1, acos, -1.0, 1.0) PL_TEST_ULP (acos, 1.02) PL_TEST_INTERVAL (acos, 0, Small, 5000) PL_TEST_INTERVAL (acos, Small, 0.5, 50000) PL_TEST_INTERVAL (acos, 0.5, 1.0, 50000) PL_TEST_INTERVAL (acos, 1.0, 0x1p11, 50000) PL_TEST_INTERVAL (acos, 0x1p11, inf, 20000) PL_TEST_INTERVAL (acos, -0, -inf, 20000)