/* * Double-precision 10^x function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #define N (1 << EXP_TABLE_BITS) #define IndexMask (N - 1) #define OFlowBound 0x1.34413509f79ffp8 /* log10(DBL_MAX). */ #define UFlowBound -0x1.5ep+8 /* -350. */ #define SmallTop 0x3c6 /* top12(0x1p-57). */ #define BigTop 0x407 /* top12(0x1p8). */ #define Thresh 0x41 /* BigTop - SmallTop. */ #define Shift __exp_data.shift #define C(i) __exp_data.exp10_poly[i] static double special_case (uint64_t sbits, double_t tmp, uint64_t ki) { double_t scale, y; if (ki - (1ull << 16) < 0x80000000) { /* The exponent of scale might have overflowed by 1. */ sbits -= 1ull << 52; scale = asdouble (sbits); y = 2 * (scale + scale * tmp); return check_oflow (eval_as_double (y)); } /* n < 0, need special care in the subnormal range. */ sbits += 1022ull << 52; scale = asdouble (sbits); y = scale + scale * tmp; if (y < 1.0) { /* Round y to the right precision before scaling it into the subnormal range to avoid double rounding that can cause 0.5+E/2 ulp error where E is the worst-case ulp error outside the subnormal range. So this is only useful if the goal is better than 1 ulp worst-case error. */ double_t lo = scale - y + scale * tmp; double_t hi = 1.0 + y; lo = 1.0 - hi + y + lo; y = eval_as_double (hi + lo) - 1.0; /* Avoid -0.0 with downward rounding. */ if (WANT_ROUNDING && y == 0.0) y = 0.0; /* The underflow exception needs to be signaled explicitly. */ force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); } y = 0x1p-1022 * y; return check_uflow (y); } /* Double-precision 10^x approximation. Largest observed error is ~0.513 ULP. */ double exp10 (double x) { uint64_t ix = asuint64 (x); uint32_t abstop = (ix >> 52) & 0x7ff; if (unlikely (abstop - SmallTop >= Thresh)) { if (abstop - SmallTop >= 0x80000000) /* Avoid spurious underflow for tiny x. Note: 0 is common input. */ return x + 1; if (abstop == 0x7ff) return ix == asuint64 (-INFINITY) ? 0.0 : x + 1.0; if (x >= OFlowBound) return __math_oflow (0); if (x < UFlowBound) return __math_uflow (0); /* Large x is special-cased below. */ abstop = 0; } /* Reduce x: z = x * N / log10(2), k = round(z). */ double_t z = __exp_data.invlog10_2N * x; double_t kd; int64_t ki; #if TOINT_INTRINSICS kd = roundtoint (z); ki = converttoint (z); #else kd = eval_as_double (z + Shift); kd -= Shift; ki = kd; #endif /* r = x - k * log10(2), r in [-0.5, 0.5]. */ double_t r = x; r = __exp_data.neglog10_2hiN * kd + r; r = __exp_data.neglog10_2loN * kd + r; /* exp10(x) = 2^(k/N) * 2^(r/N). Approximate the two components separately. */ /* s = 2^(k/N), using lookup table. */ uint64_t e = ki << (52 - EXP_TABLE_BITS); uint64_t i = (ki & IndexMask) * 2; uint64_t u = __exp_data.tab[i + 1]; uint64_t sbits = u + e; double_t tail = asdouble (__exp_data.tab[i]); /* 2^(r/N) ~= 1 + r * Poly(r). */ double_t r2 = r * r; double_t p = C (0) + r * C (1); double_t y = C (2) + r * C (3); y = y + r2 * C (4); y = p + r2 * y; y = tail + y * r; if (unlikely (abstop == 0)) return special_case (sbits, y, ki); /* Assemble components: y = 2^(r/N) * 2^(k/N) ~= (y + 1) * s. */ double_t s = asdouble (sbits); return eval_as_double (s * y + s); }